第六章复习2北师大版八年级下册数学知识点同步练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第六章复习一、选择题1.已知▱ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.282.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°3.如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.其中正确的有()A.①②③B.①③④C.②④D.①③4.在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是()A.24B.18C.16D.125.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二、填空题6.已知平行四边形ABCD中,∠B=4∠A,则∠C=.7.如图,平行四边形ABCD中,AC=4cm,BC=5cm,CD=3cm,则▱ABCD的面积.8.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.9.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.10.如图所示,在▱ABCD中,E为AD中点,CE交BA的延长线于F,若BC=2AB,∠FBC=70°,则∠EBC的度数为度.三、解答题11.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.12.已知:如图,在▱ABCD中,∠ADC、∠DAB的平分线DF、AE分别与线段BC相交于点F、E,DF与AE相交于点G.(1)求证:AE⊥DF;(2)若AD=10,AB=6,AE=4,求DF的长.参考答案与试题解析一、选择题1.已知▱ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.28【考点】平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.2.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°【考点】平行四边形的性质;多边形内角与外角.【专题】压轴题.【分析】由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角,而它们和∠B是邻角,∠D和∠B是对角,由此可以分别求出它们的度数,然后可以判断了.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,而∠B=60°,∴∠A=∠C=120°,∠D=60°.所以D是错误的.故选D.【点评】本题主要利用了平行四边形的角的性质解决问题.3.如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四边形ABCH.其中正确的有()A.①②③B.①③④C.②④D.①③【考点】平行四边形的性质;作图—复杂作图.【分析】根据作图过程可得得AG平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,从而得到△ADH是等腰三角形.【解答】解:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质,以及角平分线的做法,关键是掌握平行四边形对边平行.4.在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是()A.24B.18C.16D.12【考点】平行四边形的性质.【分析】本题利用了平行四边形的性质,两组对边分别平行,利用两直线平行得出同位角相等后,再根据已知条件判断出BM=BN,从而四边形ABCD的周长=BM+BN=2BN而求解.【解答】解:在平行四边形ABCD中CD∥AB,AD∥BC,∴∠M=∠NDC,∠N=∠MDA,∵∠NDC=∠MDA,∴∠M=∠N=∠NDC=∠MDA,∴MB=BN=6,CD=CN,AD=MA,∴四边形ABCD的周长=AB+BC+CD+AD=MA+AB+BC+CN=MB+BN=2BN=12.故选D.【点评】要求周长就要先求出四边的长,要求四边的长,就要根据平行四边形的性质和已知条件计算.5.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④【考点】平行四边形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定.【专题】压轴题.【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:∵△ABE、△ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故④错误.故选B.【点评】本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.二、填空题6.已知平行四边形ABCD中,∠B=4∠A,则∠C=36°.【考点】平行四边形的性质.【分析】首先利用平行四边形性质得到∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故答案为36°.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.7.如图,平行四边形ABCD中,AC=4cm,BC=5cm,CD=3cm,则▱ABCD的面积12cm2.【考点】平行四边形的性质.【分析】利用勾股定理的逆定理可知△ABC是直角三角形,再利用平行四边形的面积等于2倍的△ABC的面积计算即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,∵AC=4cm,BC=5cm,∴AC2+AB2=AC2,∴△ABC是直角三角形,∴S△ABC=×3×4=6cm2,∴则▱ABCD的面积=2×6=12cm2,故答案为12cm2.【点评】本题考查了勾股定理的逆定理和平行四边形的性质,题目比较简单.8.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.【考点】平行四边形的性质.【专题】压轴题.【分析】由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.【点评】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.9.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是(5,0).【考点】平行四边形的性质;坐标与图形性质;等边三角形的性质.【专题】压轴题.【分析】设CE和x轴交于H,由对称性可知CE=6,再根据等边三角形的性质可知AC=CE=6,根据勾股定理即可求出AH的长,进而求出AO和DH的长,所以OD可求,又因为D在x轴上,纵坐标为0,问题得解.【解答】解:∵点C与点E关于x轴对称,E点的坐标是(7,﹣3),∴C的坐标为(7,3),∴CH=3,CE=6,∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC=6,∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D点的坐标是(5,0),故答案为(5,0).【点评】本题考查了平行四边形的性质、等边三角形的性质、点关于x轴对称的特点以及勾股定理的运用.10.如图所示,在▱ABCD中,E为AD中点,CE交BA的延长线于F,若BC=2AB,∠FBC=70°,则∠EBC的度数为35度.【考点】平行四边形的性质.【分析】由题意可证△DEC≌△AEF,从而推出BC=BF,即△FBC为等腰三角形,E为FCR的中点,所以得到∠EBC=∠EBF=∠CBF=35°.【解答】解:∵▱ABCD,∴AB=CD,DC∥AB,∴∠ECD=∠EFA∵DE=AE,∠DEC=∠AEF∴△DEC≌△AEF∴DC=AF∴AB=AF∵BC=2AB,AB=AF∴BC=BF∴△FBC为等腰三角形再由△DEC≌△AEF,得EC=EF∴∠EBC=∠EBF=∠CBF=×70°=35°故答案为35.【点评】本题主要考查了平行四边形的性质,题目给出了一角,求未知角,这就要根据已知的条件,让已知与未知建立联系,求出角.三、解答题11.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.【考点】平行四边形的性质.【专题】计算题;证明题.【分析】(1)根据DE是∠ADC的角平分线得到∠1=∠2,再根据平行四边形的性质得到∠1=∠3,所以∠2=∠3,根据等角对等边即可得证;(2)先根据BE=CE结合CD=CE得到△ABE是等腰三角形,求出∠BAE的度数,再根据平行四边形邻角互补得到∠BAD=100°,所以∠DAE可求.【解答】(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)解:∵四边形A

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功