第四章图形的相似周周测7全章北师大版九年级上册数学知识点周周测

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章图形的相似周周测7一、选择题(题型注释)1.已知513ab,则abab的值是()A.23B.32C.94D.492.把10cm长的线段进行黄金分割,则较长线段的长(236.25,精确到0.01)是A.3.09cmB.3.82cmC.6.18cmD.7.00cm3.如图,1l∥2l∥3l,则下列等式错误的是()A.BCEFACDFB.ABDEACDFC.ABBCDEEFD.ABADACCF4.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5mB.0.55mC.0.6mD.2.2m5.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对6.如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且∠AEF=90°则下列结论正确的是()。A、△ABF∽△AEFB、△ABF∽△CEFC、△CEF∽△DAED、△DAE∽△BAF7.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC=().A.41B.32C.31D.21FEDCBA8.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.3秒或4.8秒B.3秒C.4.5秒D.4.5秒或4.8秒9.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A.6米B.7米C.8.5米D.9米10.如图,在△ABC中,EF∥BC,21EBAE,S四边形BCFE=8,则S△ABC等于()A.9B.10C.12D.1311.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.1:2B.1:4C.1:5D.1:612.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)13.如图,DEBC∥,若AD=7,DB=5,EC=4,则AE=________。14.两个相似三角形的面积比为4:9,那么它们对应中线的比为.15.如图,等边ABC△的边长为3,P为BC上一点,且1BP,D为AC上一点,若60APD°,则CD的长为.16.如图所示,DE是△ABC的中位线,BD与CE相交于点O,则OBOD的值是.17.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.18.如图,点D、E分别在△ABC边BC、AC上,连接线段AD、BE交于点F,若AE:EC=1:3,BD:DC=2:3,则EF:FB=.19.如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.20.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.21.(1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.22.如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.23.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)△A1B1C1与△ABC的位似比是;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断2AD与AC·CD的大小关系;(2)求∠ABD的度数.参考答案1.D2.C3.D4.A5.A6.C7.D8.A.9.D10.A11.B12.D13.28514.2:315.23.16.217.1:218.19.(1)、2s或4s;(2)、不存在20.(1)作图见解析(2)1:321.(1)、证明过程见解析;(2)、证明过程见解析;(3)、t=1秒或5秒.22.(1)、△ABD∽△AEC;△ABE∽△ADC;(2)、证明过程见解析23.(1)详见解析;(2)3.24.(1)21;(2)答案见解析;(3)(-2a,2b).25.(1)2ADACCD;(2)36°.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功