弹力突变问题研究例1如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为,L2水平拉直,物体处于平衡状态。求解下列问题:(1)现将线L2剪断,求剪断L2的瞬时物体的加速度;(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度。•(1)当线L2被剪断的瞬间,因细线L2对球的弹力突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L1斜向下方,为a=gsin(2)当线L2被剪断时,细线L2对球的弹力突然消失,而弹簧的形变还来不及变化(变化要有一个过程,不能突变),因而弹簧的弹力不变,它与重力的合力与细线L2对球的弹力是一对平衡力,等值反向,所以线L2剪断时的瞬时加速度为a=gtan,方向水平向右。点评:求解此题应注意以下两点:(1)其他力改变时,弹簧的弹力不能在瞬间发生突变。(2)其他力改变时,细绳上的弹力可以在瞬间发生突变。练习:1、如图所示,A、B质量均为m,中间有一轻质弹簧相连,A用绳悬于O点,当突然剪断OA绳时,关于A物体的加速度,下列说法正确的是()A.0B.gC.2gD.无法确定C2、一条轻弹簧上端固定在天花板上,下端连接一物体A,A的下边通过一轻绳连接物体B.A,B的质量相同均为m,待平衡后剪断A,B间的细绳,则剪断细绳的瞬间,物体A的加速度和B的加速度?AB例2.质量均为m的A、B两球之间系着一根不计质量的轻弹簧,放在光滑水平台面上,A求紧靠着墙壁,现用力F将B球向左推压弹簧,平衡后,突然将力F撤去的瞬间,A、B球的加速度如何?0AamFaBABFANkxBkxF解:撤去F前,A、B球受力分析如图所示.撤去F瞬间,F立即消失,而弹簧弹力不能突变.根据牛顿第二定律有分析问题在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化.先看不变量,再看变化量;加速度与合外力瞬时一一对应.例4.两物体P,Q分别固定在质量可以忽略不计的弹簧的两端,竖直放在一块水平板上并处于平衡状态,两物体的质量相等,如突然把平板撤开,在刚撤开的瞬间P,Q的加速度各是多少?QP(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的。•(1)力和加速度的瞬时对应性是高考的重点。物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然。•(2)细绳弹力可以发生突变而弹簧弹力不能发生突变。分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意两种基本模型的建立。(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。