绝密★启用前2019年普通高等学校招生统一考试文科数学试题卷一、单选题1.已知集合={|1}Axx−,{|2}Bxx=,则A∩B=A.(–1,+∞)B.(–∞,2)C.(–1,2)D.2.设z=i(2+i),则z=A.1+2iB.–1+2iC.1–2iD.–1–2i3.已知向量a=(2,3),b=(3,2),则|a–b|=A.2B.2C.52D.504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙6.设f(x)为奇函数,且当x≥0时,f(x)=𝑒𝑥−1,则当x0时,f(x)=A.𝑒−𝑥−1B.𝑒−𝑥+1C.−𝑒−𝑥−1D.−𝑒−𝑥+17.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若x1=4,x2=34是函数f(x)=sinx(0)两个相邻的极值点,则=A.2B.32C.1D.129.若抛物线y2=2px(p0)的焦点是椭圆2231xypp+=的一个焦点,则p=A.2B.3C.4D.810.曲线y=2sinx+cosx在点(π,–1)处的切线方程为A.10xy−−−=B.2210xy−−−=C.2210xy+−+=D.10xy+−+=11.已知a∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.55C.33D.25512.设F为双曲线C:22221xyab−=(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A.2B.3C.2D.5二、填空题13.若变量x,y满足约束条件23603020xyxyy,,,+−+−−则z=3x–y的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.VABC的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题17.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥11EBBCC−的体积.18.已知{}na是各项均为正数的等比数列,1322,216aaa==+.(1)求{}na的通项公式;(2)设2lognnba=,求数列{}nb的前n项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[0.20,0)−[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:748.602.20.已知12,FF是椭圆2222:1(0)xyCabab+=的两个焦点,P为C上一点,O为坐标原点.(1)若2POFV为等边三角形,求C的离心率;(2)如果存在点P,使得12PFPF⊥,且12FPF△的面积等于16,求b的值和a的取值范围.21.已知函数()(1)ln1fxxxx=−−−.证明:(1)()fx存在唯一的极值点;(2)()=0fx有且仅有两个实根,且两个实根互为倒数.22.在极坐标系中,O为极点,点000(,)(0)M在曲线:4sinC=上,直线l过点(4,0)A且与OM垂直,垂足为P.(1)当0=3时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知()|||2|().fxxaxxxa=−+−−(1)当1a=时,求不等式()0fx的解集;(2)若(,1)x−时,()0fx,求a的取值范围.参考答案1.C【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)AB=−I,故选C.【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.2.D【解析】【分析】本题根据复数的乘法运算法则先求得z,然后根据共轭复数的概念,写出z.【详解】2i(2i)2ii12iz=+=+=−+,所以12zi=−−,选D.【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.A【解析】【分析】本题先计算−ab,再根据模的概念求出||−ab.【详解】由已知,(2,3)(3,2)(1,1)−=−=−ab,所以22||(1)12−=−+=ab,故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.B【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,abc,剩余的2只为,AB,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}abcabAabBacAacBaAB,{,c,},{,c,},{b,,},{c,,}bAbBABAB共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},abAabBacAacB{,c,},{,c,}bAbB共6种,所以恰有2只做过测试的概率为63105=,选B.【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.D【解析】【分析】先把x0,转化为-x0,代入可得𝑓(−𝑥),结合奇偶性可得𝑓(𝑥).【详解】∵𝑓(𝑥)是奇函数,𝑥≥0时,𝑓(𝑥)=𝑒𝑥−1.当𝑥0时,−𝑥0,𝑓(𝑥)=−𝑓(−𝑥)=−𝑒−𝑥+1,得𝑓(𝑥)=−𝑒−𝑥+1.故选D.【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7.B【解析】【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:内两条相交直线都与平行是//的充分条件,由面面平行性质定理知,若//,则内任意一条直线都与平行,所以内两条相交直线都与平行是//的必要条件,故选B.【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//abab,则//”此类的错误.8.A【解析】【分析】从极值点可得函数的周期,结合周期公式可得.【详解】由题意知,()sinfxx=的周期232()44T==−=,得2=.故选A.【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.9.D【解析】【分析】利用抛物线与椭圆有共同的焦点即可列出关于p的方程,即可解出p,或者利用检验排除的方法,如2p=时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.【详解】因为抛物线22(0)ypxp=的焦点(,0)2p是椭圆2231xypp+=的一个焦点,所以23()2ppp−=,解得8p=,故选D.【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.10.C【解析】【分析】先判定点(,1)−是否为切点,再利用导数的几何意义求解.【详解】当x=时,2sincos1y=+=−,即点(,1)−在曲线2sincosyxx=+上.2cossin,yxx=−Q2cossin2,xy==−=−则2sincosyxx=+在点(,1)−处的切线方程为(1)2()yx−−=−−,即2210xy+−+=.故选C.【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.11.B【解析】【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.【详解】2sin2cos21=+Q,24sincos2cos.0,,cos02=Q.sin0,2sincos=,又22sincos1+=,2215sin1,sin5==,又sin0,5sin5=,故选B.【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.12.A【解析】【分析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设PQ与x轴交于点A,由对称性可知PQx⊥轴,又||PQOFc==Q,||,2cPAPA=为以OF为直径的圆的半径,A为圆心||2cOA=.,22ccP,又P点在圆222xya+=上,22244cca+=,即22222,22ccaea===.2e=,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.13.9.【解析】【分析】作出可行域,平移30xy−=找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得.【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC区域