第1页西华大学电气信息学院综合设计报告1前言(绪论)1.1太阳能热水器的发展概况及市场竞争分析目前,中国已成为世界上最大的太阳能热水器生产国,年产量约为世界各国之和,已有一百多家太阳能热水器生产厂。但是与之配套的太阳能热水器控制器却一直处在研究与开发阶段。这种控制器只具有温度和液位显示功能,而且为分段显示,温度显示误差为10%,水位显示误差为25%。这种显示器(还称不上控制器)不具有温度控制功能,当由于天气原因而光强不足时,就会给热水器用户带来不便;即使热水器具有辅助加热功能,由于加热时间不能控制而产生过烧,从而浪费大量的电能。本文设计的太阳能热水器控制器以80C51单片机为检测控制核心,采用DS12887实时时钟,不仅实现了时间、温度和水位三种参数实时显示和FUZZY控制功能,而且具有时间设定、温度设定与控制功能。温度控制采用模糊控制,控制器可以根据天气情况利用辅助加热装置使蓄水箱内的水温在设定时间达到预先设定的温度,从而达到24小时供应热水的目的。太阳能热水器是太阳能利用中最常见的一种装置,经济效益明显,正在迅速的推广应用,太阳能热水器能够将太阳辐射能转换热能,供生产和生活使用。他主要由平板集热器、蓄水器和连接管道等部件组成,可分循环式、直流式和闷晒式。当今社会发展日新月异,人们衣食住行也在不断的提高。现有电热型热水器费用昂贵及燃气型的不安全性,且排放二氧化碳污染大气,北方用煤气取暖造成城市空气环境污染,这些都是太阳能热水器良好的外部生存环境。太阳能热水器克服了上述缺点,他是绿色环保产品。它使用简单、方便。太阳能热水器顺呼时代发展的要求,满足人们对环保绿色产品的需求。在人类文明程度日益提高的今天,它是现代文明社会的最佳选择。应该注意到,集体单位对太阳能热水器的用量很大。新建商住楼安装热水器,已是房屋开发公司计划之内的事,配套热水器的商品房销势更好[5]。此款热水器包括主、从两大系统:主系统的特点是在晴好的天气利用太阳光能为热水器加热;从系统相当于电热水器,它在无光照的情况下利用电辅助加热。它充分利用太阳能的丰富的免费的资源的优势,同时考虑到在阴天及夜间无法利用太阳能的缺点,充分发挥太阳能热水器和电热水器的各自优势,这是世面上大部分热水器所不能比拟的。1.2太阳能热水器的应用及意义众所周知,太阳能是取之不尽,用之不竭,没有污染的巨大能源。随着世界上煤、油、气的储量日益减少,能源危机已日益增长,环境污染的危机已威胁着生态平衡,太阳能开发利用的课题已提到人类的面前。有人预测:二十一世纪太阳能将由辅助能源上升为主要能源。但由于太阳能的分散性、季节性和地区性又给太阳能利用带来重重困难,有些技术难点尚未突破,产品造价偏高(如光电池)。因而尚未被人们大规模的使用。在太阳能热利用技术中,太阳能热水器是技术上比较成熟、造价比较低廉的产品,同时给人民提供不耗能源、保护环境、绝对安全的热水而受到人们的欢迎。太阳能热水器是以太阳能光热转换,利用温室效应和虹吸原理使水加热的装置,此装置分为两个不同的概念:1.太阳能热水工程系统,这种系统由太阳能集热器、储水箱管线、补水箱组成不同第2页西华大学电气信息学院综合设计报告形式的热水系统,包括自然循环式、定温放水式等等,可构成提供热水10吨到100吨的装置,大多提供集体单位使用。2.太阳能热水器是指将上述各种不见组装成一个小系统,提供家庭或需要产热水1吨以下的单位使用,此种装置算为太阳能热水器。太阳能热水器(或系统)均以其采光面积作为计量单位,一般1平方米光面积可产热水100升,采光面积每种型号不同,一般在1.5~2.0平方米。我国从“六五”计划期间开始推广太阳能热水器,到目前全国已有250万平方米采光面积的太阳能热水器,厂家又几家发展到全国约有180家左右,是目前世界上推广最大的国家之一,而且形成了规模,形成了中国特色的太阳能企业,有中国太阳能协会为中心的学术中心,以中国农村能源企业协会太阳能热利用专业委员会为中心,制定了产品标准、测试条件、产品合格证颁发等一系列措施。世界各国的太阳能热水器生产发展也很快。例如:澳大利亚政府规定,在北部地区新建房屋一定要设置太阳能热水器,西澳大利亚已有25%的新住宅安装了太阳能热水器。日本现在每年安装太阳能热水器近50万台,现在有20%的家庭安装了太阳能热水器,计划今后普及率达到25%,按照日本的“阳光计划”还将为公寓,办公楼安装6500套太阳能热水系统,为工厂安装1900套工业用太阳能热水系统。以色列的法令规定所有新建筑物必须配备太阳能热水器,目前普及率已超过60%。英、法、德、意、希腊五国到2000年底推广热水器600万平方米,比1990年增长2倍多。国内外太阳能热水器使用量增长如此之快,其根本原因是:能源问题、环保问题是当今世界各国面临的主要问题之一。太阳能热水器是节能、环保产品,故受到广泛重视,发展极快,预计今后每年将以15%~20%的速度发展。根据理论计算及实际应用证明,太阳能热水器每平方米光面积一年可节约标准煤200-300公斤节电1500度,或节约液化气180公斤。采用本热水器与电热水器、燃气热水器相比,还具有绝对安全,最为卫生的特点,在电费,液化气、煤气价格较高的地区,用户1-3年即收回投资,在这以后提供的热水是免费的。设计可以参考以下的几个意见:1.在设计民用建筑时,若此地区没有集中热水供应,可给用户安装太阳能热水器,以提供热水,提高住房的档次,在设计时将冷、热水管线预埋,以平均每套住宅建筑面积65平方计算,工程造价大约每平方米增加18-20元,2.设计工厂浴室时,可考虑采用太阳能热水系统,每平方采光面积产热水100升计算,100平方米太阳能热水系统可产热水10吨,每人每次标准用水40升,可解决250人的洗浴用水。作为工厂中低温工业热水,可根据当地各种各样的不同条件予以特殊设计。3.作为工厂中低温工业热水,可根据当地各种各样的不同条件予以特殊设计,太阳能热水器的推广应用及经济效益据不完全统计,迄今全国太阳能热水器累计安装使用总量已达300万平方米以上。所以该控制器具有使用方便、性价比高、工作可靠、精度高等特为太阳能热水器的进一步推广具有积极的推动作用。第3页西华大学电气信息学院综合设计报告2总体方案设计2.1方案比较方案一设计的太阳能热水器控制系统以89C52单片机为检测控制中心单元,采用DSl2887实时时钟,不仅实现了时间、温度和水位三种参数实时显示功能,而且具有时间设定、温度设定与控制功能。控制系统可以根据天气情况利用辅助加热装置(电加热器)使蓄水箱内的水温达到预先设定的温度,从而达到24小时供应热水的目的。实际应用结果表明,该控制器和以往显示仪相比具有性价比高、温度控制与显示精度高、使用方便和性能稳定等优点。AT89C52图2-1系统硬件结构图方案二采用系统的温度采集选用PTl000铂电阻温度传感器,采集到的电压信号经集成运放LM324放大到2.O一5.0伏之间,送入串行加转换器11LCl543N,转换结果由单片机处理,其电路原理如图3所示.设计时将加转换器的参考电压设置为vREF+=5.0V,VREF=1.5V.LM324按照同相比例放大电路连接,则Vo=vi*(Rt/R+1)=0.5*(Rt/300+1).Rt值的变化表示了PtlooO温度传感器温度的变化,每个温度值对应一定的转换结果。可以在程序中建立一个查找表,表中每个元素的地址即为转换结果,元素值即为所对应的温度值。第4页西华大学电气信息学院综合设计报告图2-2系统硬件结构图12.2方案选择方案一硬件电路简单,程序设计复杂一些,但是我已经使用开发工具KEIL用汇编语言对系统进行了程序设计,用仿真软件PROTEUS对系统进行了仿真,达到了预期的结果。由此可见,该方案完成具有可行性,体现了技术的先进性,经济上也没有问题。根据设计的要求,以及设计的便捷性,综上所述,本课题采用方案一对系统进行设计。第5页西华大学电气信息学院综合设计报告3.单元模块设计3.1各单元模块功能介绍及电路设计物3.1.1单片机系统设计单片机系统由AT89C52和一定功能的外围电路组成,包括为单片机提供复位电压的复位电路,提供系统频率的晶振。这部分电路主要负责程序的存储和运行。上图中MCS-51内部时钟方式电路外接晶体以及电容C5和C6构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格的要求,但电容的大小会影响振荡器频率的高低、谐振器的稳定性、起振的快速性和温度的稳定性。晶体可在1.2MHz~12MHz之间任选,电容C5和C6的典型值在20pF~100pF之间选择,但在60pF~70pF时振荡器具有较高的频率稳定性。典型值通常选择为30pF左右,但本电路采用33pF。在设计印刷电路板时,晶体或陶瓷振荡器和电容应尽可能安装的与单片机芯片靠近,以减少寄生电容,更好的保证振荡器稳定和可靠的工作。为了提高温度稳定性,应采用温度稳定性能好的NPO高频电容。AT89C52的复位是由外部的复位电路来实现的。复位电路通常采用上电自动复位和按钮复位两种方式。本设计中所用到的是上电按钮复位。图3-1单片机系统第6页西华大学电气信息学院综合设计报告3.1.2控制器实时时钟接口电路为实现热水器24小时供应热水的目的,控制器必须有一个实时时钟来为系统提供准确的基准时间;在软件设计上则要实时地读出当前时间,同设定时间比较,以决定系统工作状态。本系统采用美国DALLAS半导体公司最新推出的时钟芯片DS12887,该芯片采用CMOS技术,把时钟芯片所需的晶振和电池以及相关的电路集成到芯片内部,并与MC146818管脚完全兼容。DS12887芯片具有微功耗、外围接口简单、精度高,工作稳定可靠等优点。它与89C52单片机的接口电路见下图3-1。图3-1DS12887与单片机接口电路3.1.3水位检测和温度检测接口电路蓄水箱水位和温度检测部分是实现温度智能控制的重要环节,只有准确地检测出水位和温度,才能通过软件计算提前开始辅助加热的预加热时间。要实现辅助加热提前时间的精确计算,最好是采用连续液位传感器,但考虑系统成本,本设计仍采用分段式液位传感器(通过软件来提高精度),在水位显示上也仍采用分段显示。水位检测部分的硬件连接如图3-2所示。第7页西华大学电气信息学院综合设计报告图3-2水位监测及显示接口电路检测原理如下:当水箱中无水时,8个非门均由1M欧姆电阻上拉成高电平,所以图中各“非”门(CD4069)输出均为低电平,LED1~LED8均不亮。当水位高于“非”门1的输入探针时,由于水的导电作用,使“非”门1的输入变为低电平,所以其输出变为高电平,LED点亮,依此类推。随着水位的上升,各“非”门输出相继为高电平,LED依次点亮。这里要注意的是上拉电阻不能选择太小,因为水的电阻在100k8左右,所以上拉电阻选择太小的话,将在水位升高时,无法把“非”门输入端拉成低电平。实验表明,上拉电阻选择在500k~1M欧姆左右能很好地满足电路的工作要求。为了使89C52随时能够读出当前的水位情况,这里选用74LS244作为状态输入缓冲器。蓄水箱温度检测电路采用DS18B20芯片使其换成脉冲信号,送到89C52的I/O口(编程为计数器工作模式),通过测量输出脉冲频率的大小来换算成水温高低信号。3.1.4DS18B20与单片机接口电路设计第8页西华大学电气信息学院综合设计报告基于DS18B20多点温度测量系统以AT89C51为中心器件,以KEIL为系统开发平台,用C语言进行程序设计,以PROTEUS作为仿真软件设计而成的。DS18B20是智能温度传感器,它的输入/输出采用数字量,以单总线技术,接收主机发送的命令,根据DS18B20内部的协议进行相应的处理,将转换的温度以串口发送给主机。主机按照通信协议用一个IO口模拟DS18B20的时序,发送命令(初始化命令、ROM命令、功能命令)给DS18B20,并读取温度值,在内部进行相应的数值处理,用图形液晶模块显示各点的温度。在系统启动之时,可以通过4×4键盘设置各点温度的上限值,当某点温度超过设置值时