考单招——上高职单招网2016大连职业技术学院单招数学模拟试题(附答案解析)一选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题意要求的1.设集合,,,则=()A.B.C.D.2.函数的反函数的解析表达式为()A.B.C.D.3.在各项都为正数的等比数列中,首项,前三项和为21,则=()A.33B.72C.84D.1894.在正三棱柱中,若AB=2,则点A到平面的距离为()A.B.C.D.5.中,,BC=3,则的周长为()A.B.C.D.6.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是()考单招——上高职单招网A.B.C.D.07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.B.C.D.8.设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则其中真命题的个数是()A.1B.2C.3D.49.设,则的展开式中的系数不可能是()A.10B.40C.50D.8010.若,则=()A.B.C.D.11.点在椭圆的左准线上,过点P且方向为的光线经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为()考单招——上高职单招网A.B.C.D.12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若,则”的否命题为__________14.曲线在点处的切线方程是__________15.函数的定义域为__________16.若,,则=__________17.已知为常数,若,,则=__________18.在中,O为中线AM上一个动点,若AM=2,则的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆与圆的半径都是1,,过动点P分别作圆.圆的切线PM、PN(M.N分别为切考单招——上高职单招网点),使得试建立适当的坐标系,并求动点P的轨迹方程20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是和假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中...目标的概率;⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;⑶假设某人连续2次未击中...目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)考单招——上高职单招网如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,,⑴求异面直线CD与SB所成的角(用反三角函数值表示);⑵证明:BC⊥平面SAB;⑶用反三角函数值表示二面角B—SC—D的大小(本小问不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数⑴当时,求使成立的的集合;⑵求函数在区间上的最小值考单招——上高职单招网23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分)设数列的前项和为,已知,且,其中A.B为常数⑴求A与B的值;⑵证明:数列为等差数列;⑶证明:不等式对任何正整数都成立参考答案(1)D(2)A(3)C(4)B(5)D(6)B(7)D(8)B(9)C(10)A(11)A(12)B(13)若,则(14)(15)(16)-1(17)2(18)-2考单招——上高职单招网(19)以的中点O为原点,所在的直线为x轴,建立平面直角坐标系,则(-2,0),(2,0),由已知,得因为两圆的半径均为1,所以设,则,即,所以所求轨迹方程为(或)(20)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A1,由题意,射击4次,相当于4次独立重复试验,故P(A1)=1-P()=1-=答:甲射击4次,至少1次未击中目标的概率为;(Ⅱ)记“甲射击4次,恰好击中目标2次”为事件A2,“乙射击4次,恰好击中目标3次”为事件B2,则,,由于甲、乙设计相互独立,故答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为;考单招——上高职单招网(Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A3,“乙第i次射击为击中”为事件Di,(i=1,2,3,4,5),则A3=D5D4,且P(Di)=,由于各事件相互独立,故P(A3)=P(D5)P(D4)P()=×××(1-×)=,答:乙恰好射击5次后,被中止射击的概率是(21)(Ⅰ)连结BE,延长BC、ED交于点F,则∠DCF=∠CDF=600,∴△CDF为正三角形,∴CF=DF又BC=DE,∴BF=EF因此,△BFE为正三角形,∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE(或其补角)就是异面直线CD与SB所成的角∵SA⊥底面ABCDE,SA=AB=AE=2,∴SB=,同理SE=,又∠BAE=1200,所以BE=,从而,cos∠SBE=,∴∠SBE=arccos所以异面直线CD与SB所成的角是arccos(Ⅱ)由题意,△ABE为等腰三角形,∠BAE=1200,考单招——上高职单招网∴∠ABE=300,又∠FBE=600,∴∠ABC=900,∴BC⊥BA∵SA⊥底面ABCDE,BC底面ABCDE,∴SA⊥BC,又SABA=A,∴BC⊥平面SAB(Ⅲ)二面角B-SC-D的大小(22)(Ⅰ)由题意,当时,由,解得或;当时,由,解得综上,所求解集为(Ⅱ)设此最小值为①当时,在区间[1,2]上,,因为,,则是区间[1,2]上的增函数,所以②当时,在区间[1,2]上,,由知③当时,在区间[1,2]上,若,在区间(1,2)上,,则是区间[1,2]上的增函数,考单招——上高职单招网所以若,则当时,,则是区间[1,]上的增函数,当时,,则是区间[,2]上的减函数,因此当时,或当时,,故,当时,,故总上所述,所求函数的最小值(23)(Ⅰ)由已知,得,,由,知,即解得.(Ⅱ)由(Ⅰ)得①所以②考单招——上高职单招网②-①得③所以④④-③得因为所以因为所以所以,又所以数列为等差数列(Ⅲ)由(Ⅱ)可知,,要证只要证,因为,,故只要证,即只要证,因为所以命题得证考单招——上高职单招网