2014年湖南省长沙市中考数学试卷解析版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12014年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、12D、-12解:12的倒数是2,故选:A.2.下列几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥解:A、圆锥的主视图、左视图、俯视图分别为等腰三角形,等腰三角形,圆及圆心,故A选项不符合题意;B、六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故B选项不符合题意;C、球的主视图、左视图、俯视图分别为三个全等的圆,故C选项符合题意;D、四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故D选项不符合题意;故选C.3.(3分)(2014•长沙)一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3B.3和4C.4和3D.4和4解:将数据从小到大排列为:2,3,3,4,8,则中位数是3,平均数==4.故选B.4.(3分)(2014•长沙)平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等解:平行四边形的对角线互相平分,故选:B.5.(3分)(2014•长沙)下列计算正确的是()2A.+=B.(ab2)2=ab4C.2a+3a=6aD.a•a3=a4解:A、被开方数不能相加,故A错误;B、积的乘方等于每个因式分别乘方,再把所得的幂相乘,故B错误;C、系数相加字母部分不变,故C错误;D、底数不变指数相加,故D正确;故选:D.6.(3分)(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cmB.3cmC.4cmD.6cm解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=43m,答:AD的长为3cm.故选:B.7.(3分)(2014•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1B.x≥1C.x>3D.x≥3解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.8.(3分)(2014•长沙)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()3A.1B.C.2D.2解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C.9.(3分)(2014•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选A.10.(3分)(2014•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.解:a>0时,y=的函数图象位于第一三象限,y=ax2的函数图象位于第一二象限且经过原点,a<0时,y=的函数图象位于第二四象限,y=ax2的函数图象位于第三四象限且经过原点,纵观各选项,只有D选项图形符合.故选D.4二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=110度.解:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.故填110.12.(3分)(2014•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为:(2,5).13.(3分)(2014•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.解:∠ACB=∠AOB=×100°=50°.故答案是:50.514.(3分)(2014•长沙)已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.解:依题意,得2×12﹣3k×1+4=0,即2﹣3k+4=0,解得,k=2.故答案是:2.15.(3分)(2014•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:=.故答案为:.16.(3分)(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.解;∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵=,∴=()2=,,∴S△ABC=18,故答案为:18.17.(3分)(2014•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.6证明:∵AB∥DE,∴∠B=∠DEF∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF=6.故答案是:6.18.(3分)(2014•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).解:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:7解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).故答案为:(﹣1,0).三、解答题(共2小题,每小题6分,共12分)19.(6分)(2014•长沙)计算:(﹣1)2014+﹣()﹣1+sin45°.解:原式=1+2﹣3+1=1.20.(6分)(2014•长沙)先简化,再求值:(1+)+,其中x=3.解:原式=•=•=,当x=3时,原式==.四、解答题(共2小题,每小题8分,共16分)821.(8分)(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:9ABCDA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.22.(8分)(2014•长沙)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵矩形ABCD沿对角线AC折叠点B落在点E处,∴AB=AE,∠B=∠E,∴AE=CD,∠D=∠E,在△AOE和△COD中,,∴△AOE≌△COD(AAS);(2)解:∵△AOE≌△COD,∴AO=CO,∵∠OCD=30°,AB=,10∴CO=CD÷cos30°=÷=2,∴△AOC的面积=AO•CD=×2×=.五、解答题(共2小题,每小题9分,共18分)23.(9分)(2014•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设至少应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.24.(9分)(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.解答:(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,11∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△ADE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=.六、解答题(共2小题,每小题10分,共20分)1225.(10分)(2014•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.解:(1)∵点P(2,m)是“梦之点”,∴m=2,∵点P(2,2)在反比例函数y=(n为常数,n≠0)的图象上,∴n=2×2=4,∴反比例函数的解析式为y=;(2)假设函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”(x,x),则有x=3kx+s﹣1,整理,得(3k﹣1)x=1﹣s,当3k﹣1≠0,即k≠时,解得x=;当3k﹣1=0,1﹣s=0,即k=,s=1时,x有无穷多解;当3k﹣1=0,1﹣s≠0,即k=,s≠1时,x无解;综上所述,当k≠时,“梦之点”的坐标为(,);当k=,s=1时,“梦之点”有无数个;当k=,s≠1时,不存在“梦之点”;(3)∵二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),∴x1=ax12+bx1+1,x2=ax22+bx2+1,∴ax12+(b﹣1)x1+1=0,ax22+(b﹣1)x2+1=0,∴x1,x2是一元二次方程ax2+(b﹣1)x+1=0的两个不等实根,13∴x1+x2=,x1•x2=,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=()2﹣4•==4,∴b2﹣2b=4a2+4a﹣1=(2a+1)2﹣2,∴t=b2﹣2b+=(2a+1)2﹣2+=(2a+1)2+.∵﹣2<x1<

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功