江西省2016-2017学年七年级下学期期末考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,点E在DA的延长线上,下列条件中能判定AB∥CD的是()A.∠B=∠BAEB.∠BCA=∠CADC.∠BCA+∠CAE=180°D.∠D=∠BAE2.(3分)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,数轴上有A、B、C、D四点,根据图中各点的位置,判断与10﹣2最接近的点是()A.AB.BC.CD.D4.(3分)已知,是二元一次方程mx+ny=6的两组解,则m,n的值分别为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣45.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况8.(3分)为了解某一路口某一时段的汽车流量,小然同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图折线统计图,由此估计一年(365天)该时段通过该路□的汽车数量超过200辆的天数为()A.100B.110C.146D.135二、填空题(本大题共8空,每空2分,共16分)9.(2分)如图,已知m∥n,将一块等边三角形ABC纸板放置在平行线之间,则∠1﹣∠2等于度.10.(2分)的平方根等于.11.(4分)方程组中,则x+y=,10x﹣y=.12.(4分)不等式组的解集中,整数解共有个.它们分別是.13.(4分)如图是小浩同学8月1日〜7日毎天的自主学习时间统计图,则小浩同学一天中自主学习时间最长是小时,这七天平均每天的自主学习时间是小时.三、解下列不等式(组)(本大题共4小题,每小题5分,共20分)14.(5分)解不等式:3(x﹣2)<﹣2(2x﹣3)+x,并把它的解集在数轴上表示出来.15.(5分)解不等式组:.16.(5分)2x+3<4(x﹣1)+3≤3x+2.17.(5分)解关于x的不等式组,并依据a的取值情况写出其解集.四、统计题(本大题共2小题,每题8分,共16分)18.(8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对年龄在12〜35岁的网瘾人群的年龄进行了随机抽样调查,得到了两个统计图,如图所示,由于胡艳记录不完整,统计12〜17这一段的人数不能确定:但准确地知道AOC是扇形统计图中圆的直径.请根据图中的信息,解决下列问题:(1)求条形统汁图中a的值;(2)求扇形统计图中30~35岁部分的圆心角∠AOD的大小;(3)据报道,目前我国12〜35岁网瘾人数约为2000万.请估计其中年龄在18〜29岁的人数.19.(8分)实验中学为了了解该校学生课外阅读情况,随机抽查了50名学生,统计他们平均每周课外阅读时间t(h).枨据时间t的长短分为A,B,C,D四类.下面是根据所抽杳的人数绘制了不完整的统计表.其中a、b、c和d是满足a<b<c<d的正整数,请解答下面的问题:50名学生平均每天课外阅读时间统计表类别ABCD时间t(h)t<11≤t<22≤t<3t≥3人数5a5b5c5d(1)写出表格中a+b+c+d的值.并求表格中的a、b、c、d的值;(2)如果每分钟阅读200个字,每天坚持课外阅读时间为0.5h,一年(365天)能阅读多少本(10万字/本)书籍?五、列不等式(组)解应用题(本大题共3小题,,每题8分,共24分)20.(8分)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm.某厂家生产符合该规定的行李箱,试求:(1)如果行李箱做成正方体形状,该行李箱的棱长的最大值为多少cm(精确到1cm);(2)如果行李箱的高为30cm,长与宽的比为3:2,该行李箱的长的最大值为多少cm?21.(8分)A市市区去年年底电动车拥有量是10万辆,力了缓解城区交通拥堵状况,今年年初,A市交通部门要求该市到明年年底控制电动车拥有量不超过11.9万辆,估计毎年报废的电动车数量是上一年年底电动车拥有量的10%,试求:(1)今年年底A市报废的电动车数量是多少万辆?(2)假定每年新增电动车数量相同,从今年初起A市毎年新增电动车数量最多是多少万辆?22.(8分)小隽新家装修,在装修客厅地面时,购进A型地砖和B型地砖共100块,共花费4800元.已知A型地砖的单价是60元/块,B型地转的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过2800元,那么A型地砖最多能采购多少决?七年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,点E在DA的延长线上,下列条件中能判定AB∥CD的是()A.∠B=∠BAEB.∠BCA=∠CADC.∠BCA+∠CAE=180°D.∠D=∠BAE考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一分析即可.解答:解:A、∵∠B=∠BAE,∴AD∥BC,故本选项错误;B、∵∠BCA=∠CAD,∴AD∥BC,故本选项错误;C、∵∠BCA+∠CAE=180°,∴AD∥BC,故本选项错误;D、∵∠D=∠BAE,∴AB∥CD.故选D.点评:本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.2.(3分)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点(a,b)在笫二象限,可得a<0,b>0,所以ab<0,a﹣b<0,所以点(ab,a﹣b)所在象限是第三象限,据此判断即可.解答:解:∵点(a,b)在笫二象限,∴a<0,b>0,∴ab<0,a﹣b<0,∴a点(ab,a﹣b)所在象限是第三象限.故选:C.点评:此题主要考查了点的坐标问题,要熟练掌握,解答此题的关键是要明确各个象限内点的坐标特征.3.(3分)如图,数轴上有A、B、C、D四点,根据图中各点的位置,判断与10﹣2最接近的点是()A.AB.BC.CD.D考点:估算无理数的大小;实数与数轴.分析:首先估算出的范围,然后估算出10﹣2的值,从而可得出问题的答案.解答:解:∵6.22=38.44,6.32=39.6∴6.2<<6.3.∴10﹣2×6.2>10﹣2>10﹣6.3×2.即:﹣2.4>10﹣2>﹣2.6.故选:A.点评:本题主要考查的是估算无理数的大小,根据有理数的乘方和算术平方根的定义估算出的大小是解题的关键.4.(3分)已知,是二元一次方程mx+ny=6的两组解,则m,n的值分别为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4考点:二元一次方程的解.专题:计算题.分析:把x与y的两对值代入方程列出方程组,求出方程组的解即可得到m与n的值.解答:解:把,代入方程mx+ny=6中,得:,②+①得:3m=12,即m=4,把m=4代入①得:n=2,故选A.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:B.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.专题:图表型.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、从图中能够看出各项消费占总消费额的百分比,故A正确;B、从图中不能确定各项的消费金额,故B错误;C、从图中不能看出消费的总金额,故C错误;D、从图中不能看出增减情况,故D错误.故选:A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.8.(3分)为了解某一路口某一时段的汽车流量,小然同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图折线统计图,由此估计一年(365天)该时段通过该路□的汽车数量超过200辆的天数为()A.100B.110C.146D.135考点:用样本估计总体;折线统计图.分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4,所以估计一年(365天)该时段通过该路口的汽车数量超过200辆的天数为:365×0.4=146(天).故选:C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题(本大题共8空,每空2分,共16分)9.(2分)如图,已知m∥n,将一块等边三角形ABC纸板放置在平行线之间,则∠1﹣∠2等于60度.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2+∠ACB,进而得出即可.解答:解:∵m∥n,∴∠1=∠2+∠ACB,∴∠1﹣∠2=∠ACB=60°.故答案为:60.点评:此题考查平行线的性质,关键是根据平行线的性质得出∠1=∠2+∠ACB.10.(2分)的平方根等于±2.考点:平方根;算术平方根.分析:先计算出的值,再根据平方根的定义,即可解答.解答:解:=4,4的平方根为±2,故答案为:±2.点评:本题考查了平方根的定义,解决本题的关键是数平方根的定义.11.(4分)方程组中,则x+y=202,10x﹣y=3210.考点:解二元一次方程组.[来源:学|科|网]分析:用方程②减去方程①可得到22x+22y=4444,然后可解得x+y=202,最后用②﹣①×2可求得10x﹣y的值.解答:解:②﹣①得;22x+22y=4444,∴22(x+y)=4444.∴x+y=202.②﹣①×2得:10x﹣y=3210.故答案为:202,3210.点评:本题主要考查的是二元一次方程组的解法,利用加减消元法整体求解是解题的关键.12.(4分)不等式组的解集中,整数解共有5个.它们分別是0、1、2、3、4.考点:一元一次不等式组的整数解.分析:先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,即可得出答案.解答:解:∵解不等式①得:x>﹣1,解不等式②得:x≤4.4,∴不等式组的解集为﹣1<x≤4.4,∴不等式组的整数解为0,1,2,3,4,共5个,故答案为:5,0、1、2、3、4点评:本题考查了解一元