2019年高考数学知识点框架图

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学知识模块框架图1模块1图、二次函数图像数轴、运算:交、并、补、无序性性质:确定性、互异性元素、集合之间的关系表示方法概念集合Veen模块2函数方程:零点问题特殊性:性质图像余弦函数正弦函数三角函数特殊性:性质图像且对数函数:特殊性:性质图像且指数函数:特殊性:性质图像联系幂函数基本初等函数导数本初等函数图像)数形结合(掌握常见基三角函数基本不等式二次函数最值且对称关于对称性周期性偶函数:奇函数:关于原点对称定义域奇偶性导数单调性性质值域对应关系使解析式有意义)定义域三要素图像法列表法解析法表示定义函数)cos()sin()1,0(log)1,0(2),()()()()()()()(,0)()(0)0(,)(,0)(')(,0)('(22121xAyxAyaaxyaaayxkycbxaxybkxyaxxxfxfxafaxfaxxfTxfxfxfDxxfxffDxDxfxfxfxfax2模块3、最值综合分析出函数的极值判断函数单调性导数的应用导数运算类)(基本初等函数求导法则处切线斜率图像上在函数几何意义或导数的概念导数)(,0)(')(,0)(')('')()0)(()]([)(')()()(')()()(')()()(')]'()([)(')(')]'()([8)()|'()()(limlim)('2'0000000xfxfxfxfxcfxcfxgxgxgxfxgxfxgxfxgxfxgxfxgxfxgxfxgxfxxxfyxxfxxfxyxfxxxx定积分与图形的计算定积分与微积分.)(')(),0(1ln1)()(:1ln1,.)()('),1(2)(')2)(1()(')(II**22,接着类似①求导特别注意定义域;设形似②分离参数分类讨论或)(,或求导,处理到形似:①)问(文科)导数解答题第(xgiixxxxgixxaiicbxaxxfexxfxxxxfix模块4最值对称性周期性单调性奇偶性图像值域定义域形如正切函数余弦函数正弦函数图像三角函数倍角公式:和角差角公式限奇变偶不变,符号看象诱导公式同角三角函数的关系三角函数线义任意角的三角函数的定式弧长公式、扇形面积公弧度制角的概念三角函数bxAyxyxyxy)sin(tan:cos:sin:cossin22sin,sin211cos2sincos2cos:cossintan,1sincos:2222223模块5000coscos)()(221112212211212212yxyxabbayxyxabbayxyxbabababaabababyyxxa垂直∥共线(平行)共线与垂直坐标运算:,则夹角为与设夹角公式方向上的投影为在投影几何意义数量积坐标表示基本定理几何意义加、减、数乘线性运算模概念平面向量模块6错位相减法裂项求和法分组求和法倒序相加法公式法常见求和方法构造法(等比)构造法(等差)构造法(等比)累乘法累加法常见递推类型及方法,项积前等比:等差:判断性质求和公式通项公式等比数列等差数列之间的关系)以及递推公式:(前后两项之间的关系)与通项公式:(列表法图像法数列是特殊的函数解析法表示概念数列nnnnnnnnnnnnnnnnnntsmnnnnnqpmnnnnnqpaaaaapaqpaanfaanfaaaTnaaTaaaaqaanaaSaaaadnaaqqaSqnaSqnna11111111111211)()()0()(2)1(11,1,14模块7基本不等式:构造距离构造斜率的几何意义:找出一次函数:应用题目标函数可行域简单的线性规划三个二次的关系借助二次函数的图像一元二次不等式不等式的性质不等式拓展22)()()(:byaxzbxaxfaxbyzzbyaxzii模块8全称量词与存在量词非一假则假且一真便真或:复合命题非充分条件、充要条件充分非必要条件、必要条件逆否命题否命题否互否互逆命题原命题关系命题简易逻辑互逆互逆pqpqp::模块9222122001211211121211221122101)(.0)(00)(0BACCdBACByAxdCByAxbyaxxxxxyyyybkxyxxkyyBBAABABABABA平行线间的距离:点到直线的距离:距离两直线的交点运用范围注意各种形式的转化和一般式:截距式:两点式:斜截式:点斜式:直线方程的形式可负,也可为截距:注意截距可正、相交斜率存在,斜率相等平行重合位置关系变化倾斜角的变化与斜率的倾斜角与斜率直线的方程5两圆的位置关系坐标法或相交或相切或相离直线与圆的位置关系圆的一般方程圆的标准方程圆的方程)(0,00,00,00:)()(:22222dddFEyDxyxrbyaxrdrdrdBACBbAadrbarbyaxbxyxkyCByAx相交相切相离圆心到直线距离:半径圆心:圆平移斜率:形如旋转定点:形如直线直线与圆直线与圆位置关系特点标准方程特点一般式22222:,)()(::1)1(0直接代入法特殊对称轴:对称)关于直线)与点(点(轴对称曲线()曲线)点()点(中心对称对称性问题离心率性质定义及标准方程抛物线双曲线椭圆、直接法轨迹方程求法:定义法曲线与方程圆锥曲线利用中点、斜率关系)对称关于点()对称关于点(01)(0220,,))(2,2)(,(2,2,12122121221111,1111,11CyxBAxxyyCyyBxxACByAxyxyxxfbxaxfxybxayxbaba2222222221122222222222211.,,,22,2)0(1)0(1)(22ababaacaceyxyxbaccbababxayybabyaxxcaPFPF离心率:以及中位线的运用,注意定义和余弦定理②涉及焦点三角形问题)再利用作差法作答;()于设点坐标(①涉及中点问题,要敢;;依据图形易得,焦距短轴长性质:长轴长轴上焦点在轴上焦点在标准方程注意文字叙述定义:圆椭6222222222222222222211..22,2)0,0(1)0,0(1)(22-ababaacacebaccbaxbayxabybabxayybabyaxxcaPFPF离心率:以及中位线的运用,注意定义和余弦定理②涉及焦点三角形问题问题性解决直线与曲线交点①会利用双曲线的特殊;;依据图形易得,焦距虚轴长性质:实轴长渐近线方程:轴上焦点在轴上焦点在标准方程注意文字叙述定义:双曲线特殊性1.2,,,2;2021)0(2)0(2)(2211121220epxxypypxpppyxyppxyxxpxPF离心率:)或()要学会设点坐标(②关于定值定点问题,等问题;性解决直线与曲线弦长①会利用抛物线的特殊),准线,性质:焦点((几何意义)离心率为正半轴上焦点在正半轴上焦点在标准方程正半轴上以下默认焦点在定义:抛物线特殊性dABSkCByAxdamakABacyyabyyacxxabxxxxyxByxAacbcbxaxcbyaykxyymyxx21)(111,,,,,,040011:**200222221212121212211222⑥点常是原点⑤面积问题继续:④如果需要:则且设:③(相异两点)或化简:②注意对直线分类讨论轴,常设定点在轴,常设定点在直线椭圆圆锥曲线联立方程组:①通法:圆锥曲线(椭圆)弦长.,,3,3**线解决定值问题,利用向量共动点多:两条直线交点类似椭圆弦长步骤;注意数量积的运用②,类似椭圆弦长步骤;易得向量问题:①中点问题:做差法;PBAPyyFBAFBA7模块10.:sin21)cos()cos(cos)sin()sin(sin2cos)0(sinsinsin222的角度和固定距离构造三角形,注意特殊实际应用:积面余弦定理:正弦定理:解三角形AbcSCBCBACBCBAbcacbAkkCcBbAaCBA.**隐含条件的挖掘角形的综合问题,注意转化或构建方程解答三式配合,通过等价面积公式与三角函数公础知识,正余弦定理及③能熟练运用三角形基知关系式的等价转化:②熟练地进行边角和已;等变形方法巧解三角形①运用方程观点结合恒及解决方法主要有:本难点所涉及的问题以模块11nnadnnnnnanababa平行平面之间的距离直线与平面的距离点到面的距离空间的距离空间直角坐标系空间向量二面角直线与平面所成的角异面直线的角空间的角,范围:,范围:,范围:212102020cossincos模块12模的几何意义量)的对应关系、复数复数与复平面内点(向几何意义加、减、乘、除、乘方运算共轭复数模:轴虚轴轴实轴虚部实部纯虚数:虚数:概念:复数biazbazyxbababiazbiaz:::::0,0228模块13内切

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功