《角的概念的推广》教案一、教学目标:1、知识与技能(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。2、过程与方法类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。二、教学重、难点重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。难点:把终边相同的角用集合和符号语言正确地表示出来。三、学法与教学用具在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。教学用具:多媒体、三角板、圆规四、教学思路【创设情境,揭示课题】同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。这里面到底是怎么回事?这就是我们这节课所要学习的内容。初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。【探究新知】如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)1.正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程).我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°。钟表的时针和分针在旋转时所形成的角总是负角.为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以记成“α”。过去我们研究了0°~360°范围的角.如图(见课件)中的角α就是一个0°~360°范围内的角(α=30°).如果我们将角α的终边OB继续按逆时针方向旋转一周、两周……而形成的角是多少度?是不是仍为30°的角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备).将终边OB旋转一周、两周……,分别得到390°,750°……的角.如果将OB继续旋转下去,便可得到任意大小的正角。同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程).这就是说,角度并不局限于0°~360°的范围,它可以为任意大小的角(与数轴进行比较).(打开课件第三版).如图(1)中的角为正角,它等于750°;(2)中,正角α=210°,负角β=—150°,γ=-660°.在生活中,我们也经常会遇到不在0°~360°范围的角,如在体操中,有“转体720°”(即“转体2周”),“转体1080°”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角.角的概念经过这样的推广以后,就包括正角、负角和零角.2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(打开课件第四版)例如图(1)中的30°、390°、-330°角都是第一象限角,图(2)中的300°、-60°角都是第四象限角;585°角是第三象限角.(板书)如果角的终边在坐标轴上,就认为这个角不属于任一象限.3.终边相同的表示方法.(返回课件第二版,在图(1)1(2)中分别以O为原点,直线0A为x轴建立直角坐标系,重新演示前面的旋转过程)在图(1)中,如果将终边OB按逆时针方向旋转一圈、两圈……,分别得到390°,750°……的角,这些角的终边与30°角的终边相同,只是转过的圈数不同,它们可以用30°角来表示,如390°=30°十360°,750°=30°十2×360°,……在图(2)中,如果将终边OB按顺时针方向旋转一圈、两圈……分别得到-330°,-690°……的角,这些角的终边与30°角终边也相同,也只是转过的圈数不同,它们也都可以用30°的角来表示,如-330°=30°-360°,-690°=30°—2×360°,……由此可以发现,上面旋转所得到的所有的角(记为β),都可以表示成一个0°到360°的角与k(k∈Z)个周角的和,即:β=30°十k·360°(k∈Z).如果我们把β的集合记为S,那么S={β|β=30°十k·360°,k∈Z}.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30°角终边相同。【巩固深化,发展思维】1.例题讲评例1.判断下列各角是第几象限角.(1)—60°;(2)585°;(3)—950°12’.解:(1)∵—60°角终边在第四象限,∴它是第四象限角;(2)∵585°=360°十225°,∴585°与225°终边相同,又∵225°终边在第三象限,∴585°是第三象限角;(3)∵—950°12’=-230°12’—2×360°,又∵-230°12’终边在第二象限,∴—950°12’是第二象限角.例2.在直角坐标系中,写出终边在y轴上的角的集合(α用0°~360°的角表示).解:在0°~360°范围内,终边在y轴上的角有两个,即90°与270°角,因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z};所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z};所以,终边在y轴上的角的集合S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}.例3.写出与60°角终边相同的角的集合S,并把S中适合不等式-360°≤β<270°的元素β写出来.解:S={β|β=60°+k·360°,k∈Z},S中适合-360°≤β<270°的元素是:60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.2.学生课堂练习参考练习(通过多媒体给题)。(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)与—496°终边相同的角是,它是第象限的角,它们中最小正角是,最大负角是。(3)时针经过3小时20分,则时针转过的角度为,分针转过的角度为。(4)若α、β的终边关于x轴对称,则α与β的关系是;若α与β的终边关于y轴对称,则α与β的关系是;若α、β的终边关于原点对称,则α与β的关系是;若角α是第二象限角,则180°—α是第象限角。[答案](1)是,不一定.(2)—496°十k·360°(k∈Z),三,240°,—136°.(3)—100°,—1200°.(4)α十β=k·360°(k∈Z);α十β=180°十k·360。(k∈Z);α一β=180°十k·360°(k∈Z);一.五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?你知道角是如何推广的吗?(2)象限角是如何定义的呢?你熟练掌握具有相同终边角的表示了吗?(3)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(4)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1.2第2,3题.七、课后反思学习不是一朝一夕的事情,需要平时积累,需要平时的勤学苦练。有个故事:古希腊大哲学家苏格拉底在开学第一天对他的学生们说:“今天你们只学一件最简单也是最容易的事儿。每人把胳膊尽量往前甩,然后再尽量往后甩。”说着,苏格拉底示范做了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事,有什么做不到的?过了一个月,苏格拉底问学生:每天甩手300下,哪个同学坚持了,有90%的学生骄傲的举起了手,又过了一个月,苏格拉底又问,这回,坚持下来的学生只剩下了80%。一年过后,苏格拉底再一次问大家:“请告诉我,最简单的甩手运动。还有哪几个同学坚持了?”这时,整个教室里,只有一个人举起了手,这个学生就是后来成为古希腊另一位大哲学家的柏拉图。同学们,柏拉图之所以能成为大哲学家,其中一个重要原因,就是,柏拉图有一种持之以恒的优秀品质。要想成就一番事业,必须有持之以恒的精神,大家都熟悉愚公移山的故事,愚公之所以能够感动天帝,移走太行、王屋二山。正是因为他具有锲而不舍的精神。戎马一生,他前十次革命均告失败,但他百折不挠,终于在第十一次革命的时候,推翻了清王朝的统治,建立了中华民国。这些故事,情节不同,但意义都是一样的,它告诉无们,做事要有恒心。旬子讲:“锲而不舍,朽木不折;锲而舍之,金石可镂。”这句话充分说明了一个人如果有恒心,一些困难的事情便可以做到,没有恒心,再简单的事也做不成。学习是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯。所以我说:学习贵在坚持!当下市面上关于教授学习方法的书籍不少,其所载内容也的确很有道理,然而当读者实际应用时,很多看似实用的方法用来效果却并不明显,之后的结果无非是两种:要么认为自己没有掌握其精髓要领,要么抱怨那本书的华而不实,但最终肯定还是会回归到当初的原点。这本《学会学习》在一开始并没有急于兜售自己的方法,而是通过测试让读者真正了解自己,从而找到适合自己思维方式的学习方法,书的第一部分就是左脑还是右脑思维测试和视觉、听觉和动觉学习模式测试,经过有效分类后,针对不同读者对不同思考和接收接受学习的特点,有针对性的分别给出建议,从而不断强化自己的优势。在其后书中的所有介绍具体学习方法章节的最开始,都是按照不同学习模式给出各种学习方法不同的建议,这是此书区别于其他学习方法类书籍的最大特点,这种“因材施教”的方式能让读者有种豁然开朗的感觉,除了能够得到最适合自己的有效的学习方法也能更深入的认识客观的自己,不论对学习还是生活都有帮助。除了“针对性”强外,本书第二大特点就是“全面”,全书都是由一篇篇短文、图表集成,更像是一本博文或者PPT课件合集,每个学习方法的题目清晰明了十分便于查找,但也因此有些章节内容安排的比较混乱,所幸每一章节关联性并不太强,每个章节都适合独立检索来阅读学习。其内容从“时间规划”、“笔记”“阅读”直到“考试”几乎涉及了所有学习中的常遇问题,文中文字精炼没有过分的渲染,完全是纯纯的“干货”,可以设身处地的想象:当自己面对学海之中手足无措之时,长篇大论的方法肯定会无心查看,明了的编排,让人从目录中就能一目了然的找到自己想要的,一篇篇短文尽可能在最少的时间让读者得到最有用的信息,是一部值得学习的人们不断自我提高的有力武器。曾经看到一个有意