1/19几何专题(1)旋转2/193/194/195/196/197/1920.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.8/199/19类比探究题类型一线段数量关系问题(2018·河南)(1)问题发现如图①,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为________;②∠AMB的度数为________;(2)类比探究如图②,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.10/191.(2016·河南)(1)发现如图①,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于________________时,线段AC的长取得最大值,且最大值为__________(用含a,b的式子表示).(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图②所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展如图③,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.11/192.(2015·河南)如图①,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AEBD=____;②当α=180°时,AEBD=____;(2)拓展探究试判断:当0°≤α360°时,AEBD的大小有无变化?请仅就图②的情形给出证明.(3)解决问题当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.12/193.(2014·河南)(1)问题发现如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为__________;②线段AD,BE之间的数量关系为______________.(2)拓展探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13/194.(2018·南阳二模)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是______________,______________;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于________度时,线段CE和BD之间的位置关系仍成立(点C,E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=32时,请直接写出线段CF的长的最大值是____.14/195.已知,如图①,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图①,OFEC=_______;②将△AED绕点A逆时针旋转45°,如图②,OFEC=_______;(2)类比延伸将图①中△AED绕点A逆时针旋转到如图③所示的位置,请计算出OFEC的值,并说明理由.(3)拓展探究将图①中△AED绕点A逆时针旋转,旋转角为α,0°≤α≤90°,AD=2,△AED在旋转过程中,存在△ACD为直角三角形,请直接写出线段CD的长.15/19类型二图形面积关系问题(2017·河南)如图①,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图①中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图②的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.图①图②16/191.(2013·河南)如图①,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是______________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是______________.(2)猜想论证当△DEC绕点C旋转到如图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.17/192.已知Rt△ABC中,BC=AC,∠C=90°,D为AB边的中点,∠EDF=90°,将∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于E,F.当∠EDF绕点D旋转到DE⊥AC于E时,如图①所示,试证明S△DEF+S△CEF=12S△ABC.(1)当∠EDF绕点D旋转到DE和AC不垂直时,如图②所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明理由.(2)直接写出图③中,S△DEF,S△CEF与S△ABC之间的数量关系.18/193.(2018·郑州模拟)如图①所示,将两个正方形ABCD和正方形CGFE如图所示放置,连接DE,BG.(1)图中∠DCE+∠BCG=__________°;设△DCE的面积为S1,△BCG的面积为S2,则S1与S2的数量关系为______________;猜想论证:(2)如图②所示,将矩形ABCD绕点C按顺时针方向旋转后得到矩形FECG,连接DE,BG,设△DCE的面积为S1,△BCG的面积为S2,猜想S1和S2的数量关系,并加以证明;(3)如图③所示,在△ABC中,AB=AC=10cm,∠B=30°,把△ABC沿AC翻折得到△AEC,过点A作AD平行CE交BC于点D,在线段CE上存在点P,使△ABP的面积等于△ACD的面积,请写出CP的长.19/194.(2018·驻马店一模)如图①,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想图①中,PM与PN的数量关系是______________,位置关系是______________;(2)探究证明将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G,H,判断△PMN的形状,并说明理由;(3)拓展延伸把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.