热点八-方案设计题(应用题)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

热点八方案设计题【例1】某采摘农场计划种植AB、两种草莓共6亩,根据表格信息,解答下列问题:(1)若该农场每年草莓全部被采摘的总收入为460000元,那么AB、两种草莓各种多少亩?(2)若要求种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?【思路分析】本题依然是通过方程表达总量去解决。总收入就是A的亩产乘以价格加上B的亩产乘以价格,列出方程即可。至于第二问则是先根据“种植A种草莓的亩数不少于种植B种草莓的一半”列出不等式,求出A种草莓的范围,然后列出函数式来看在范围内总收入最大值是多少。【解析】解:设该农场种植A种草莓x亩,B种草莓(6)x亩依题意,得:601200402000(6)460000xx…………2分解得:2.5x,63.5x(2)由1(6)2xx≥,解得2x≥设农场每年草莓全部被采摘的收入为y元,则:601200402000(6)8000480000yxxx∴当2x时,y有最大值为464000答:(l)A种草莓种植2.5亩,B种草莓种植3.5亩.(2)若种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.项目品种AB年亩产(单位:千克)12002000采摘价格(单位:元/千克)6040【例2】《喜羊羊与灰太狼》是一部中、小学生都喜欢看的动画片,某企业获得了羊公仔和狼公仔的生产专利.该企业每天生产两种公仔共450只,两种公仔的成本和售价如下表所示.如果设每天生产羊公仔x只,每天共获利y元.(1)求出y与x之间的函数关系及自变量x的取值范围;(2)如果该企业每天投入的成本不超过10000元,那么要每天获利最多,应生产羊公仔和狼公仔各多少只?【思路分析】本题是刚刚火热出炉的二模题,结合了社会的热点动画片来设立问题。虽然是应用题,但是却涉及了函数的思想,造成了一定的困扰。分析本题首先需要清楚“获利”这个概念,就是售价减成本再乘以数量。其中,每天生产的数量是定值450,所以狼公仔就要用羊公仔数去表示,然后合理列出函数表达式。第二问夹杂进了不等式,需要判断出x的范围上限和下限分别代表什麽意思,尤其是明白一次函数的单调性。【解析】解:(1)根据题意,得y=(23-20)x+(35-30)(450-x),即y=-2x+2250.自变量x的取值范围是0≤x≤450且x为整数.(2)由题意,得20x+30(450-x)≤10000.解得x≥350.由(1)得350≤x≤450.∵y随x的增大而减小,∴当x=350时,y值最大.y最大=-2×350+2250=1550.∴450-350=100.答:要每天获利最多,企业应每天生产羊公仔350只,狼公仔100只.类别成本(元/只)售价(元/只)羊公仔2023狼公仔3035【例3】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若运送三种苹果所获利润的情况如下表所示:苹果品种甲乙丙每吨苹果所获利润(万元)0.220.210.2设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.【思路分析】本题虽然是设函数的问题,但是利用“共”100吨这个关系列出包含x,y的函数即可。第二问则是在第一问的基础上继续建立函数,化简后利用第一问的自变量范围求最小值。细心把握题中信息就可以了。【解析】(1)∵81011(10)100xyxy,∴y与x之间的函数关系式为310yx.∵y≥1,解得x≤3.∵x≥1,10xy≥1,且x是正整数,∴自变量x的取值范围是x=1或x=2或x=3.(2)80.22100.2111(10)0.20.1421Wxyxyx.因为W随x的增大而减小,所以x取1时,可获得最大利润,此时20.86W(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.真题精讲1、(2010辽宁大连,25,12分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米.【分析】第(1)问要读懂图象的意义,明确A、B两地的距离就是x=0时y的值,甲车到达C地,就是函数关系开始发生变化的时候;第(2)问关键搞清2小时这一时刻,甲乙相遇;在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动;3.5到5小时甲走完全程,乙在运动;第(3)问就是知道函数值,根据不同的函数关系求出相应的x的值..【答案】(1)300,1.5;(2)由题知道:乙的速度为306021.5(千米/小时),甲乙速度和为300301801.5(千米/小时),所以甲速度为120千米/小时.2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动,则D(2.5,30),E(3.5,210),F(5,300).设CD解析式为ykxb,则有202.530kbkb,解得60120kb,60120yx;同理可以求得:DE解析式为180420yx;EF解析式为60yx.1.52300x(时)Oy(千米)30综上60120,(22.5)180420,(2.53.5)60,(3.55)xxyxxxx.图象如下.(3)当01.5x时,可以求得AB解析式为180300yx,当y=150时,得56x小时,当2.53.5x时,代入180420yx得196x小时.答:略.【涉及知识点】图象信息的读取用待定系数法求一次函数关系式【点评】本题是以物流公司的货运为背景的图象信息题.图象是乙车(慢车)的行驶时间与两车之间的距离,需对由图象得到的信息进行转化,才能得到乙车的行驶时间与行驶距离之间的关系;同时由于本题从表象上看是计算题,但在解题过程中需不断进行分析和推理,对思维能力要求较高;再加上图象中的隐含条件较多,要用哪些条件,需考生根据解题需要决定,对综合分析能力提出了很高的要求.2、(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.(温馨提示:请画在答题卷相对应的图上)(1.5,70)、(2,0),然后利用待定系数法,确定直线解析式即可.【答案】(1)线段AB所在直线的函数解析式为:y=kx+b,将(1.5,70)、(2,0)代入得:1.57020kbkb,解得:140280kb,所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,y=280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:222802240mnmn,解得:8060mn,所以快车的速度为80千米/时,所以2807802t.(3)如图所示.3、某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶00~12∶00,下午14∶00~18∶00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?解:(1)设小王每生产一件甲种产品用x分,每生产一件乙种产品用y分,由题意得:解得:答:小王每生产一件甲种产品,每生产一件乙种产品分别15分和20分.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680-0.14x=-0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=-0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.4、某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少?并求出总收益的最大值.解:(1)800×3000=2400000(元)答:政府未出台补贴措施前,该市种植这种蔬菜的总收益额为2400000元.(2)由图象得:种植亩数y和政府补贴数额x之间是一次函数关系,设y=kx+b因为图象过(0,800)和(50,1200),所以解得:所以,由图象得:每亩收益z和政府补贴数额x之间是一次函数关系,设z=kx+b因为图象过(0,3000)和(100,2700),所以解得:所以,(3)当x=450时,总收益最大,此时w=7260000(元)综上所述,要使全市这种蔬菜的总收益最大,政府应将每亩补贴数额定为450元,此时总收益为7260000元.5、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【分析】(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x﹣20)米,根据“甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同”可列出分式方程求解;(2)设分配给甲工程队y米,则分配给乙工程队(1000﹣y)米,根据“完成该项工程的工期不超过10天”列不等式组,求出y的取值范围,y取整数,从而确定方案.【答案】(1)解:设根据题意得:20250350xx.解得x=70.检验:x=70是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米.(2)解:设分配给甲工程队y米,则分配给乙工

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功