巧算24点的经典题目及技巧

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Forpersonaluseonlyinstudyandresearch;notforcommercialuse蚀巧算24的经典题目艿⑴5551:5(5-1/5)=24⑵27910:((7-(2-9))+10)=24羈⑶271010:((2×(7+10))-10)=24⑷2888:((2×(8+8))-8)=24膇⑸281010:((2+(10/10))×8)=24⑹291010:((9+(10/2))+10)=24莂⑺2889:((2-(8-9))×8)=24⑻28810:((8-(2-8))+10)=24节⑼2899:((2+(9/9))×8)=24⑽28910:((2×(8+9))-10)=24肈⑾3339:((9-(3/3))×3)=24⑿33310:((3×(10-3))+3)=24莃⒀3333:((3×(3×3))-3)=24⒁3334:((3×(3+4))+3)=24肄⒂3335:((3×3)+(3×5))=24⒃3336:((3×(3+3))+6)=24肀⒄3337:((7+(3/3))×3)=24⒅3338:((3+(3-3))×8)=24膈螄蒂“算24点”的技巧蝿1.利用3×8=24、4×6=24求解。把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(10—6÷3)×3=24等。又如2、3、3、7可组成(7+3—2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。膈2.利用0、11的运算特性求解。如3、4、4、8可组成3×8+4—4=24等。又如4、5、J、K可组成11×(5—4)+13=24等。膅3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)芄①(a—b)×(c+d)如(10—4)×(2+2)=24等。薈②(a+b)÷c×d如(10+2)÷2×4=24等。芇③(a-b÷c)×d如(3—2÷2)×12=24等。薆④(a+b-c)×d如(9+5—2)×2=24等。蚂⑤a×b+c—d如11×3+l—10=24等。薁⑥(a-b)×c+d如(4—l)×6+6=24等。莇例题1:3388:解法8/(3-8/3)=24按第一种方法来算,我们有8就先找3,你可能会问这里面并没有3,其实除以1/3,就是乘3.蚃例题2:5551:解法5*(5-1/5)这道体型比较特殊,5*2.5算是比较少见,一般的简便算法都是3*8,2*12,4*6,15+9,25-1,但5*25也是其中一种莄一般情况下,先要看4张牌中是否有2,3,4,6,8,Q,莀如果有,考虑用乘法,将剩余的3个数凑成对应数。如果有两个相同的6,8,Q,比如已有两个6,剩下的只要能凑成3,4,5都能算出24,已有两个8,剩下的只要能凑成2,3,4,已有两个Q,剩下的只要能凑成1,2,3都能算出24,比如(9,J,Q,Q)。如果没有2,3,4,6,8,Q,看是否能先把两个数凑成其中之一。总之,乘法是很重要的,24是30以下公因数最多的整数。蒇(2)将4张牌加加减减,或者将其中两数相乘再加上某数,相对容易。肄(3)先相乘再减去某数,有时不易想到。例如(4,10,10,J)袂(6,10,10,K)腿(4)必须用到乘法,且在计算过程中有分数出现。有一个规律,设4个数为a,b,c,d。必有ab+c=24或ab-c=24d=a或b。若d=a有a(b+c/a)=24或a(b-c/a)=24如最常见的(1,5,5,5),薇(2,5,5,10)因为约分的原因也归入此列。(5,7,7,J)蒅(4,4,7,7)(3,3,7,7)等等。(3,7,9,K)是个例外,可惜还有另一种常规方法,降低了难度。只能用此法的只有10个。薄(5)必须用到除法,且在计算过程中有分数出现。这种比较难,比如(1,4,5,6),(3,3,8,8)(1,8,Q,Q)等等。膂只能用此法的更少,只有7种。袆(6)必须用到除法,且在计算过程中有较大数出现,不过有时可以利用平方差公式或提公因数等方法不必算出这个较大数具体等于几。比如(3,5,7,K),(1,6,J,K)等等。只能用此法的只有16种。肄(7)最特殊的是(6,9,9,10),9*10/6+9=24,9是3的倍数,10是2的倍数,两数相乘的积才能整除6,再也找不出第二个类似的只能用此法解决的题目了。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功