偏微分方程的历史及应用数学与信息科学学院09级数学与应用数学专业学号09051140129姓名项猛猛摘要偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。关键字偏微分方程偏微分方程历史偏微分方程应用引言偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。正文一、偏微分方程的起源及历史微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程xkzyxTTTT2222222其中k是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程,0),()0,(,0,0),(,0),0(TT222lxxfxTttlTtTxkx,其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为1)/(.sin),(T2222ntlknnlxnebtx为了满足初始条件,必须有1.sin)(nnlxnbxf这就促使傅里叶不得不考虑任给一个函数,能否将它表示成三角级数的问题。傅里叶得出的结论是:每个函数都可以表示成1.0,sin)(nnxnxbxf这样,每个nb可由上式乘以,...)2,1(sinnnx,再从0到积分而得到。他还指出这个程序可以应用于表达式10.0,cos2)(nnxnxaaxf接着,他考虑了任何函数)(xf在区间),(的表达式,利用对称区间上的任何函数可以表示成一个奇函数和一个偶函数之和这一事实,傅里叶可以将区间),(上的任何函数)(xf表示为10),sincos(2)(nnnnxbnxaaxf其系数由,cos)(1nxdxxfan1,sin)(1nnxdxxfbn确定,这就是我们通常所称的傅里叶级数。为了处理无穷区域上的热传导问题,傅里叶同时还导出了现在所谓的“傅里叶积分”:0.)(cos)(1)(dttxutfduxf需要指出的是,傅里叶从没有对“任意”函数可以展成傅里叶级数这一断言给出过任何完全的证明,它也没有说出一个函数可以展开为三角级数必须满足的条件。然而傅里叶本人对此充满信心,因为他的信念有几何上的根据。十九世纪偏微分方程的另一个重要发展是围绕着位势方程来进行的,这方面的代表人物格林(G..Green)是一位磨坊工出身、自学成才的英国数学家。位势方程也称拉普拉斯方程:.0VVVV222222zyx格林是剑桥数学物理学派的开山祖师,他的工作培育了汤姆逊(W.Thomson)、斯托克斯(G.Stokes)、麦克斯韦(J.C.Maxwell)等强有力的后继者,他们是十九世纪典型的数学物理学家。他们的主要目标,是发展求解重要物理问题的一般数学方法,而他们手中的主要武器就是偏微分方程,以至于在十九世纪,偏微分方程几乎变成了数学物理的同义词。剑桥数学物理学派的贡献使经历了一个多世纪沉寂后英国数学在十九世纪得以复兴,麦克斯韦1864年导出的电磁场方程,)(1rottEcH,)(1rottHcE,)(Ediv0)(Hdiv是十九世纪数学物理最壮观的胜利,正是根据对这组方程的研究,麦克斯韦预言了电磁波的存在,不仅给科学和技术带来巨大的冲击,同时也是偏微分方程威名大振。爱因斯坦在一次纪念麦克斯韦的演讲中说:“偏微分方程进入理论物理学时是婢女,但逐渐变成了主妇,”他认为这是从十九世纪开始的,而剑桥数学物理学派尤其是麦克斯韦在这一转变中起了重要的作用。除了麦克斯韦方程,十九世纪导出的著名偏微分方程组还有粘性流体运动的纳维(C.L.M.H.Navier)-斯托克斯和弹性介质的柯西方程等。对18、19世纪建立起来类型众多的微分方程,数学家们求显式解的努力往往归于失败,这种情况促使他们转而证明解的存在性。最先考虑微分方程解的存在性问题的数学家是柯西。他指出:在求显式解无效的场合常常可以证明解的存在性。他在19世纪20年代对形如y)f(x,y'的常微分方程给出了第一个存在性定理,这方面的工作被德国数学家李普希茨(R.Lipschitz)、法国数学家刘维尔(J.Liouville)和皮卡(C.E.Picard)等追随。柯西也是讨论偏微分方程解的存在性的第一人,他在1848年的一系列论文中论述了如何将任意阶数大于1的偏微分方程化为偏微分方程组,然后讨论了偏微分方程组解的存在性并提出了证明存在性的强函数方法。柯西的工作后来被俄国女数学家柯瓦列夫斯卡娅(C.B.Ковалевская)独立地发展为包括拟线性方程和高阶组在内非常一般的形式。有关偏微分方程解的存在唯一性定理在现代文献中就称为“柯西-柯瓦列夫斯卡娅定理”。当研究在解决物理问题的过程中出现的具体微分方程时,往往会产生一些极具普遍性、起初并没有严格的数学根据而应用于范围广泛物理问题的方法。例如,傅里叶方法、里茨(Ritz)方法、伽辽金(Галёркин)方法、摄动理论方法等就是这一类方法。这些方法应用的有效性成为试图对它们进行严格论证的原因之一。这就导致新的数学理论、新的研究方向的建立(傅里叶积分理论、本证函数展开理论和广义函数论等等)。二、偏微分方程的应用在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件:(1)针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。(2)对相应的偏微分方程模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的求解方法。(3)编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。下面以大家比较熟悉的人口问题及传染病动力学问题为例,详细阐述偏微分方程在解决实际问题中的应用。1、偏微分方程在人口问题中的应用人口问题是大家都很感兴趣的问题(这里所说的人口是广义的,并不一定限于人,可以是任何一个与人有类似性质的生命群体)。对人口的发展进行研究最先所采用的大多是常微分方程模型。例如,马尔萨斯模型[4]:,:)()(00pptttapdttdp其中)(tp表示t时刻的人口总数,0p为初始时刻0t时的人口总数,a表示人口净增长率。马尔萨斯模型只在群体总数不太大时才合理。因为当生物群体总数增大时,生物群体的各成员之间由于有限的生存空间、有限的自然资源及食物等原因,就要进行生存竞争。而马尔萨斯模型仅考虑了群体总数的自然线性增长项)(tap,没有考虑生存竞争对群体总数增长的抵消作用。因此在群体总数大了以后,马尔萨斯模型就不再能预见群体发展趋势,这时就要采用威尔霍斯特模型[5]:,:)()()(002pptttpatapdttdp其中,a称为生命系数,而且a比a要小很多。)(2tpa就是考虑到生存竞争而引入的竞争项。当群体总数)(tp不太大时,由于a比a小很多,则可以略去上面方程中右端的第二项而回到马尔萨斯模型。但是当群体总数增大到一定程度时,上面方程中右端的第二项所产生的影响就不能忽略。不论是马尔萨斯模型还是威尔霍斯特模型,它们都是将生物群体中的每一个个体视为同等地位来对待的,这个原则只适用于低等动物。对于人类群体来说,必须考虑不同个体之间的差别,特别是年龄因素的影响。人口的数量不仅和时间有关,还应该和年龄有关,而且人口的出生、死亡等都和年龄有关。不考虑年龄因素就不能正确地把握人口的发展动态。这时,就必须给出用偏微分方程描述的人口模型[5]:AatdtpbtpxAxxpptAxtxtpxdxxtptxtp)3()0(),()()0,(:0)2()0()(:0)1()0,0(),()(),(),(0其中,),(xtp表示任意时刻t按年龄x的人口分布密度,)(xd表示年龄为x的人口死亡率,)(xb表示年龄为)(Axax的人的生育率,a表示可以生育的最低年龄,A表示人的最大年龄。对于上述偏微分方程模型成立如下结论:定理1:对偏微分方程的初值问题(1)-(3),如果下列条件成立:(1)在区间],0[A上,0)(0xp且适当光滑;(2)在区间],0[A上,0)(xd且适当光滑,并且当0Ax时,)(xd及ddx0)(;(3)Aadpbp)()()0(00;(4)Aadpdpbpdp))()()()(()0()0()0(0'00'0。则该初边值问题(1)-(3)存在唯一的整体解),(xtp并且满足0),(xtp且0),(Atp。该模型在经过适当的简化假设后,例如