八年级数学正比例函数1课件.ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

问题:1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它。(1)这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?(一个月按30天)(2)这只燕鸥的行程y(单位:千米)与飞行的时间x(单位:天)之间有什么关系?25600÷(30×4+7)≈200(km)y=200x(0≤x≤128)(3)这只燕鸥飞行1个半月的行程大约是多少千米?当x=45时,y=200×45=9000下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长L随半径r大小变化而变化;L=2πrm=7.8V(2)铁的密度为7.8g/,铁块的质量m(单位g)随它的体积V(单位)大小变化而变化;3cm3cm(4)冷冻一个0℃物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。下列问题中的变量对应规律可用怎样的函数表示?(3)每个练习本的厚度为0.5cm,一些练习本撂在一起的总厚度h(单位cm)随这些练习本的本数n的变化而变化;h=0.5nT=-2t这些函数有什么共同点?这些函数都是常数与自变量的乘积的形式。(1)L=2πr(2)m=7.8V(3)h=0.5n(4)T=-2t(5)y=200x(0≤x≤128)一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。这里为什么强调k是常数,k≠0?(1)你能举出一些正比例函数的例子吗?(2)下列函数中哪些是正比例函数?121)3(3)2(3)1(xyxyxy(4)y=2x(5)y=x2+1(6)y=(a2+1)x-2练习1判断下列各题中所指的两个量是否成正比例。(是在括号内打“”,不是在括号内打“”)(1)圆周长C与半径r()(2)圆面积S与半径r()(3)在匀速运动中的路程S与时间t()(4)底面半径r为定长的圆锥的侧面积S与母线长l()(5)已知y=3x-2,y与x()rc22rSS=vtrls函数y=kx(k是不等于零的常数)叫做正比例函数,k叫做比例系数.待定系数法求正比例函数解析式的一般步骤二、把已知的自变量的值和对应的函数值代入所设的解析式,得到以比例系数k为未知数的方程,解这个方程求出比例系数k。三、把k的值代入所设的解析式。一、设所求的正比例函数解析式。待定系数法例:已知y与x成正比例,当x=4时,y=8,试求y与x的函数解析式解:∵y与x成正比例∴y=kx又∵当x=4时,y=8∴8=4k∴k=2∴y与x的函数解析式为:y=2x正比例函数y=kx中,当x=2时,y=10,则它的解析式是_________.若一个正比例函数的比例系数是4,则它的解析式是__________.练习1练习2y=4xy=5x练习3已知正比例函数y=2x中,(1)若0y10,则x的取值范围为_________.(2)若-6x10,则y的取值范围为_________.2x12y010-6100x5-12y20应用新知例1(1)若y=5x3m-2是正比例函数,m=。(2)若是正比例函数,m=。32)2(mxmy1-2例2已知△ABC的底边BC=8cm,当BC边上的高线从小到大变化时,△ABC的面积也随之变化。(1)写出△ABC的面积y(cm2)与高线x的函数解析式,并指明它是什么函数;(2)当x=7时,求出y的值。解:(1)xxxBCy482121(2)当x=7时,y=4×7=28例3已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值。解:∵y与x-1成正比例∴y=k(x-1)∵当x=8时,y=6∴7k=6∴∴y与x之间函数关系式是:76k7676xy当x=4时71876476y当x=-3时72476376y已知y与x+2成正比例,当x=4时,y=12,那么当x=5时,y=______.练习4解:∵y与x+2成正比例∴y=k(x+2)∵当x=4时,y=12∴12=k(4+2)解得:k=2∴y=2x+4∴当x=5时,y=1414某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,当x=4(个)时,y=100(元)。(1)求正比例函数关系式及自变量的取值范围;(2)求当x=10(个)时,函数y的值;(3)求当y=500(元)时,自变量x的值。例3解(1)设所求的正比例函数的解析式为y=kx,(2)当x=10(个)时,y=25x=25×10=250(元)。∵当x=4时,y=100,∴100=4k。解得k=25。∴所求正比例函数的解析式是y=25x。自变量x的取值范围是所有自然数。(3)当y=500(元)时,x===20(个)。y2550025下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午8:00整从江山开往礼贤,已知中巴车行驶的路程S(千米)与时间t(分)成正比例(途中不停车),当t=4(分)时,S=2千米。问:例4(1)正比例函数的解析式;(2)从8:30到8:40,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。江山贺村淤头礼贤14千米6千米下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午8:00整从江山开往礼贤,已知中巴车行驶的路程S(千米)与时间t(分)成正比例(途中不停车),当t=4(分)时,S=2千米。问:(1)正比例函数的解析式;(2)从8:30到8:40,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。江山贺村淤头礼贤14千米6千米解(1)设所求的正比例函数的解析式为S=kt(2)由已知得30≤t≤40,把t=4,S=2代入,得2=4k。解得k=0.5。所以,所求的正比例函数的解析式是S=0.5t。∴30≤2S≤40即15≤S≤20。由图可知中巴车行使在贺村至淤头公路上。(3)由已知得20≤S≤22,∴20≤0.5t≤22即40≤t≤44。所以从8:40至8:44,该车行使在淤头至礼贤公路上。本课小结函数y=kx(k是不等于零的常数)叫做正比例函数。比例系数(1)直接根据已知的比例系数求出解析式(2)待定系数法1、正比例函数的定义2、求正比例函数解析式的两种方法:3、在知道正比例函数解析式的前提下函数的值与取值范围自变量的值与取值范围小结1、正比例函数的概念和解析式;2、正比例函数的简单应用。

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功