70习题4.4复合函数求导法则及其应用⒈求下列函数的导数:⑴yxx()2122;⑵yxxesin23;⑶yx113;⑷yxxln;⑸yxsin3;⑹yxcos;⑺yxxx11ln();⑻yxarcsin(e)2;⑼221lnxxy;⑽yxx1222(sin);⑾yxxx1122ln;⑿yxx12csc;⒀yxx2213312334;⒁yxesin2;⒂yxaxxax2222.解(1))14)(12(2)'12)(12(2'222xxxxxxxy。(2))3sin23cos3(3sin)'()'3(sin'222xxexexeyxxx。(3)23323233)1(23)'1()1(21'xxxxy。(4)212'21ln2ln1lnln21'xxxxxxxxy。(5)3233cos3)'(cos'xxxxy。(6)xxxxy2sin)'(sin'。71(7)1(1)'(1)''211xxxyxxx=11212121(1)xxxxx=1121(1)xxxxx。(8)222222(e)'2e'1(e)1exxxxxy=1222xex。(9)4424(1)'1'[ln(1)ln(]'21xyxxxx=4422(1)xxx。(10)2232(2sin)''(2sin)xxyxx=32)sin2()cos4(2xxxx。(11)222222(1ln)'1(1ln)(1)''(1)xxxxxxyxx=2322222)1()21)(ln1(ln)1(2xxxxxx。(12)222'1csc(1csc)''1cscxxxxyx222221(cotcsc)(2)1csc21csc1cscxxxxxxx22223221csccsccot(1csc)xxxxx。(13)323423'()'()'2131yxx4523234112()(21)(4)3()(31)(9)34xxxx4522334827(21)(31)34xxxx。(14)2sin2'e(sin)'xyx2sinsin2xxe。72(15)2222()'()'xaxxyax2222222231(1)()(2)312()xaxxaxaxax42242322223()xaxaaax。⒉求下列函数的导数:⑴yxlnsin;⑵)cotln(cscxxy;⑶axaxaxyarcsin21222;⑷yxxaln()22;⑸yxxaaxxa1222222(ln().解(1)1'(sin)'cotsinyxxx。(2)(csccot)''csccotxxyxx2cotcsc(csc)csccsccotxxxxxx。(3)222221''()'(arcsin)'2xyxaxxaxaa222222111(2)()221xaaxxaaxxa22222,0,,0.axaxaax。(4)2222()''xxayxxa2222212xxaxxa221xa。(5)2222222221()''['()']2xxayxxaxxaaxxa222222222112xxxaxaxaxaxxa=22ax。⒊设fx()可导,求下列函数的导数:73⑴fx()23;⑵xfln1;⑶fx();⑷)(tanarcxf;⑸ffex(())2;⑹sin((sin))fx;⑺)(1xff;⑻1ffx(()).解(1)333222()''()()'fxfxx=)('323231xfx。(2)111'lnlnlnffxxx=)ln1('ln12xfxx。(3)1[()]'[()]'2()fxfxfx=)(2)('xfxf。(4)21[arctan()]'[()]'1[()]fxfxfx=)(1)('2xfxf。(5)222[(())]''(())[()]'xxxffeffefe222'(())'()()'xxxffefee=))((')('2222xxxeffefxe。(6)[sin((sin))]'cos((sin))((sin))'fxfxfxcos((sin))'(sin)(sin)'fxfxx=xxfxfcos)(sin'))(sincos(。(7)111'()()()fffxfxfx=)(1')()('2xffxfxf。(8)21'(())[()]'(())(())ffxfxffxffx=2))(()('))(('xffxfxff。⒋用对数求导法求下列函数的导数:⑴yxx;⑵xxxy13sin;⑶yxxcos;⑷yxxln()21;74⑸yxxx1123;⑹yxxiin()1;⑺yxxsin.解由于'(ln)'yyy,所以'(ln)'yyy。(1)lnlnyxx,'(ln)'['ln(ln)'](1ln)xyyyyxxxxxx。(2)31lnlnsinyxxx,3311'(ln)'lnsinlnsin'yyyyxxxxxx=233213)sinln()sin(cos3)sin(xxxxxxxxxxx。(3)lnlncosyxx,'(lncos)'['lncos(lncos)']yyxxyxxxx=xxxxxcostancosln。(4)lnlnln(21)yxx,'['lnln(21)(lnln(21))']yyxxxx=)12(ln)12ln()12(2)12ln(lnxxxxxx。(5)2311lnlnln(1)ln(1)22yxxx,2311'[(ln)'(ln(1))'(ln(1))']22yyxxx=)1(23111132232xxxxxxxx。(6)1lnln()niiyxx,751'[ln'()]niiyyxx=niniiixxxx111)(。(7)令,lnlnxuxuxx,则ln12ln'[()'ln(ln)']()()22xxuuxxxxuuxxx,于是,'(sin)'()'yuu=xxxxxxcos2ln2。⒌对下列隐函数求dydx:⑴yxytanarc;⑵yxye1;⑶xyyxcossin;⑷xyyln()10;⑸exyxy220;⑹0)tan(xyyx;⑺20yxxysinln;⑻xyaxy3330.解(1)在等式两边对x求导,得到2'''(arctan)'11yyxyy,解得'y=221yy。(2)在等式两边对x求导,得到''''(1)0yyyyyxexeyyxee,解得'yyyxee1。(3)等式两边平方,再对x求导,得到761sin()'2(sin)(cos()'1)yyyxyy,解得'yyyxyxysincos)(sin2)(sin21。(4)在等式两边对x求导,得到1''[ln(1)]'''01xyxyyyxyyy,解得'yxyxyy12。(5)在等式两边对x求导,得到22222()'()'(2')(2')0xyxyexyxyexyyxyy,解得2222'2xyxyxeyyexy。(6)在等式两边对x求导,得到22sec()()'()'sec()(1')(')0xyxyxyxyyyxy,解得22sec()'sec()xyyyxxy。(7)在等式两边对x求导,得到'2'sin2(sin)'(ln)'2'sin2cosln0yyxyxxyyxyxyxy,解得7722cosln'2sinyxyyyxyx。(8)在等式两边对x求导,得到222233'3'3'3('')0xyyaxyaxyxyyayaxy,解得22'ayxyyax。6.设所给的函数可导,证明:⑴奇函数的导函数是偶函数;偶函数的导函数是奇函数;⑵周期函数的导函数仍是周期函数。证⑴设()fx为奇函数,则00()()[()][()]'()limlimxxfxxfxfxxfxfxxx0(())()lim'()()xfxxfxfxx;设()fx为偶函数,则00()()()()'()limlimxxfxxfxfxxfxfxxx0(())()lim'()()xfxxfxfxx。(2)设()fx是周期为T的函数,则00(())()()()'()limlim'()xxfxTxfxTfxxfxfxTfxxx。7.求曲线1lnyxy在)1,1(M点的切线和法线方程。解对方程两边求导,得到''0yyxyy,解得2'1yyxy,将(1,1)代入得到1'(1)2y。于是切线方程为11(1)2yx,即78230xy,法线方程为12(1)yx,即210xy。8.对下列参数形式的函数求dydx:⑴;,32btyatx⑵;,132ttytx⑶;cos,sin22ttyttx⑷;e,ettbyax⑸;sin,cos33taytax⑹;ch,shbtyatx⑺;1,1ttyttx⑻;1,1tytx⑼;sine,cose2222tytxtt⑽.tanarc),1ln(2ttytx解:(1)2'33'22dyybtbtdxxata。(2)22'1331'22dyyttdxxtt。(3)22'2cossin2cossin'2sincos2sincosdyytttttttdxxttttttt。(4)2''()tttdyybebedxxaea。(5)22'3sincos'3cos(sin)dyyattdxxatt=ttan。(6)'sh'chdyybbtdxxaat。79(7)1212'(1)'1'(1)'dyyttdxxtt。(8)1'1211'121dyyttdxxtt。(9)222222'2sin2sincos(sincos)tan'2cos2cos(sin)sincosttttdyyetetttttdxxetetttt。(10)2211'12'21dyytttdxxt。9.求曲线3212tttx,3212ttty上与1t对应的点处的切线和法线方程。解将1t代入参数方程,有31,22xy。经计算,23233223232(2)'(1)(2)(1)'(22)(1)(2)3'((1)(1)tttttttttttxttt)34