2018年河北省对口升学数学高考题一、选择题(本大题共15小题,每小题3分,共45分,四个选项中只有一个符合要求)1、设集合M={0,1,2,3,4},N={xl0x≤3},则NM=A{1,2}B{0,1,2}C{1,2,3}D{0,1,2,3}2、若a,b,c为实数,且ab,则Aa-cb-cBa2b2CacbcDac2bc23、2x是x2的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4、下列函数中,既是奇函数又是减函数的是Axy31B22xyC3xyDxy15、函数)42sin(xy的图像可以有函数xy2sin的图像如何得到A向左平移4个单位B向右平移4个单位C向左平移8个单位D向右平移8个单位6、已知),,3(),2,1(mba且baba则m=A-23B23C6D-67、下列函数中,周期为的偶函数是AxysinBxy2sinCxysinD2cosxy8、在等差数列{an}中,若a1+a2+a3=12,a2+a3+a4=18,则a3+a4+a5=A22B24C26D309、记Sn为等比数列{an}的前n项和,若S2=10,S4=40,则S6=A50B70C90D13010、下列各组函数中,表示同一个函数的是Axy与2xyBxy与33xyCxy与2xyD2xy与33xy11、过圆2522yx上一点(3,4)的切线方程为A3x+4y-25=0B3x+4y+25=0C3x-4y-25=0D3x-4y+25=012、某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组两名队员,分配方案共有A2种B3种C6种D12种13、设(2x-1)2018=a0+a1x+a2x2+……….+a2018x2018,则a0+a1+a2+…….+a2018=A0B1C-1D22018-114、已知平面上三点A(1,-2),B(3,0),C(4,3),则点B关于AC中点是对称点的坐标是A(1,4)B(5,6)C(-1,-4)D(2,1)15、下列命题中正确的是(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行A(1)(2)B(1)(3)C(1)(4)D(2)(4)二、填空题(共15小题。每小题2分)16、已知函数,0,ln,0,4)(2xxxxxf则efff17、函数xxxy22log341的定义域为18、计算:03cos4log16815241!=19、不等式xx91312的解集为20若f(x)为定义域在R上的奇函数,则e1+f(0)=21、已知等差数列{an}的前n项和Sn=4n2-n,则公差d=22、ΔABC为等边三角形,则AB与BC的夹角为23、若22cossin,则2sin24、过直线2x+3y-3=0和直线x-2y+1=0的交点,且斜率为-1的直线的一般方程为25、若83tan,83cos,83sincba则abc从小到大的顺序为26、过抛物线y2=8x的焦点的弦AB中点的横坐标为3,则AB=27、设直线a与平面所成角为3,直线b,则a与b所成角的范围是28、已知锐角三角形ABC外接圆的面积为9,若a=3,则cosA=29、在ΔABC中,AB=AC=5cm,BC=6cm,若PA⊥平面ABC,PA=cm34,则三角形PBC的面积为30、将一枚硬币抛三次,则至少出现一次正面的概率三、解答题(共7小题,45分,在指定位置作答,要写出必要的文字说明,证明过程和演算步骤)31、(5分)已知集合A={x|x2-x-6≥0},B={x||x|≥m},且ABAU,求m的取值范围32、(8分)如图,将直径为8分米的半圆形铁板裁剪成一块矩形铁板,使矩形铁板ABCD的面积最大(1)求AD的长(2)求矩形铁板ABCD的面积33、(6分)已知{an}为等差数列,an=n,记其前n项和为Sn,bn=nS1,求数列{bn}的通项公式及{bn}的前n项和Tn34(6分)已知函数xxx2sincossin3求(1)函数的值域(2)函数的最小正周期(3)使函数取得最大值的x的集合35(7分)已知直线l交椭圆1121622yx,于A,B两点,M(2,1)为AB中点,求直线l的方程36(7分)在ΔABC中,∠ACB=90o,AC=BC=1,VC=1,D为VA的中(1)求证:VA⊥平面DBC(2)求DB与平面ABC所成角的正弦值37(6分)从4名男生和3名女生中任选3人参加学校组织的“两山杯”环保知识大赛,设ξ表示选中3人中女生的人数。求(1)至少有1名女生的概率(2)ξ的概率分布