第1页(共15页)2009年广东省中考数学试卷一、选择题(共5小题,每小题3分,满分15分)1.(3分)4的平方根是()A.±2B.2C.﹣2D.162.(3分)计算(a3)2的结果是()A.a5B.a6C.a8D.a﹣13.(3分)如图所示,几何体的主(正)视图是()A.B.C.D.4.(3分)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.7.26×1010元B.72.6×109元C.0.726×1011元D.7.26×1011元5.(3分)(2009•广东)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A.B.C.D.二、填空题(共5小题,每小题4分,满分20分)6.(4分)分解因式:2x3﹣8x=.7.(4分)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=cm.8.(4分)一种商品原价120元,按八折(即原价的80%)出售,则现售价应为元.第2页(共15页)9.(4分)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=.10.(4分)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(共12小题,满分85分)11.(6分)计算:|﹣|+﹣sin30°+(π+3)0.12.(6分)解方程:.13.(6分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.第3页(共15页)14.(6分)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹)(2)求证:BM=EM.15.(6分)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)16.(7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.(7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.第4页(共15页)18.(7分)(2009•广东)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.19.(7分)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形和第6个平行四边形的面积.第5页(共15页)20.(9分)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.21.(9分)(2009•中山)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程检验求原方程的解2﹣3=0令=t,则2t﹣3=0t=t=>0=,所以x=x﹣2+1=0x+2+=022.(9分)(2009•中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.第6页(共15页)2009年广东省中考数学试卷参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(3分)【考点】平方根.菁优网版权所有【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2.(3分)【考点】幂的乘方与积的乘方.菁优网版权所有【分析】根据幂的乘方(am)n=amn,即可求解.【解答】解:原式=a3×2=a6.故选B.【点评】本题主要考查了幂的乘方法则,正确理解法则是解题关键.3.(3分)【考点】简单组合体的三视图.菁优网版权所有【分析】根据三视图画法规则:(1)高平齐:正视图和侧视图的高保持平齐;(2)宽相等:侧视图的宽和俯视图的宽相等;(3)长对正:正视图和俯视图的长对正.【解答】解:由图可得,主视图应该是三列,正方体的数目分别是:1、2、1.故选B.【点评】本题考查的是三视图中主视图的确定,注意三视图的规律.4.(3分)【考点】科学记数法—表示较大的数.菁优网版权所有【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:726亿=7.26×1010元.故选A.【点评】本题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a×10n的形式,其中1≤|a|<10.对于绝对值大于10的数,指数n等于原数的整数位数减去1.5.(3分)【考点】剪纸问题.菁优网版权所有【分析】根据长方形的轴对称性作答.【解答】解:展开后应是C.故选:C.第7页(共15页)【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题(共5小题,每小题4分,满分20分)6.(4分)【考点】提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.7.(4分)【考点】圆周角定理;含30度角的直角三角形.菁优网版权所有【分析】根据圆周角定理,可得出∠C=90°;在Rt△ABC中,已知了特殊角∠A的度数和AB的长,易求得BC的长.【解答】解:∵AB是⊙O的直径,∴∠C=90°;在Rt△ACB中,∠A=30°,AB=8cm;因此BC=AB=4cm.【点评】本题主要考查圆周角定理以及特殊直角三角形的性质.8.(4分)【考点】有理数的乘法.菁优网版权所有【分析】本题考查的是商品销售问题.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为120×80%.【解答】解:根据题意可得:120×80%=96元.故答案为:96.【点评】本题比较容易,考查根据实际问题进行计算.9.(4分)【考点】概率公式.菁优网版权所有【分析】根据黄球的概率公式列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n个,根据古典型概率公式知:P(黄球)==.解得n=8.故答案为:8.【点评】用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.(4分)第8页(共15页)【考点】规律型:图形的变化类.菁优网版权所有【分析】分析几何模型,进行合理的运算,图形的变换作出正确解答.【解答】解:本题考查的是规律探究问题.从图形观察每增加一个图形,黑色正方形瓷砖就增加3块,第一个黑色瓷砖有3块,则第3个图形黑色瓷砖有10块,第N个图形瓷砖有4+3(n﹣1)=3n+1(块).故答案为:10;3n+1.【点评】本题考查学生能够在实际情景中有效的使用代数模型.三、解答题(共12小题,满分85分)11.(6分)【考点】特殊角的三角函数值;绝对值;算术平方根;零指数幂.菁优网版权所有【分析】本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.【解答】解:原式==4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值等考点的运算.12.(6分)【考点】解分式方程.菁优网版权所有【分析】等号左边的分式的分母因式分解为:(x+1)(x﹣1),那么本题的最简公分母为:(x+1)(x﹣1).方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+1)(x﹣1),得:2=﹣(x+1),解得:x=﹣3.检验:当x=﹣3时,(x+1)(x﹣1)≠0.∴x=﹣3是原方程的解.【点评】本题考查分式方程的求解.当分式方程的分母能进行因式分解时一定先进行因式分解,这样便于找到最简公分母.13.(6分)【考点】反比例函数综合题.菁优网版权所有【分析】若四边形OBAC是正方形,那么点A的横纵坐标相等,代入反比例函数即可求得点A的坐标,进而代入一次函数即可求得未知字母k.【解答】解:∵S正方形OBAC=OB2=9,∴OB=AB=3,∴点A的坐标为(3,3)∵点A在一次函数y=kx+1的图象上,∴3k+1=3,∴k=,∴一次函数的关系式是:y=x+1.【点评】解决本题的关键是利用反比例函数求得关键点点A的坐标,然后利用待定系数法即可求出函数的解析式.第9页(共15页)14.(6分)【考点】等边三角形的性质.菁优网版权所有【分析】(1)按照过直线外一点作已知直线的垂线步骤来作图;(2)要证BM=EM可证BD=DE,根据三线合一得出BM=EM.【解答】(1)解:作图如下;(2)证明:∵△ABC是等边三角形,D是AC的中点∴BD平分∠ABC(三线合一)∴∠ABC=2∠DBE∵CE=CD∴∠CED=∠CDE又∵∠ACB=∠CED+∠CDE∴∠ACB=2∠E又∵∠ABC=∠ACB∴2∠DBC=2∠E∴∠DBC=∠E∴BD=DE又∵DM⊥BE∴BM=EM.【点评】本题考查了过直线外一点作已知直线的垂线及考查了等边三角形和等腰三角形的性质;作图题要注意保留做题痕迹.证得BD=DE是正确解答本题的关键.