2.4《平面向量的数量积》教案(第一课时)2017级应用数学专业康萍一.教学内容分析本课内容选自普通高中课程标准实验教科书数学必修4(人教A版)§2.4平面向量的数量积的第一课时,本课主要内容是向量的数量积的定义及运算律,本节课让学生了解从特殊到一般再由一般到特殊的这种认识规律和体会概念法则的学习过程.二.学生学习情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法。在功的计算公式和研究向量运算的一般方法的基础上,学生基本上能类比得到数量积的含义和运算律,对于运算律不一定给全或给对,对运算律的证明可能会存在一定的困难,教学中老师要注意引导学生分析判断.三.设计思想遵循新课标以人为本的理念,以启发式教学思想和建构主义理论为指导,采用探究式教学,以多媒体手段为平台,利用问题让学生自主地参与探究,在探究过程中注重学生学习过程的体验和数学能力的发展,引导学生积极将知识融入自己的知识体系。四.教学目标知识与技能:以物理中功的实例认识理解平面向量数量积的含义及物理意义。过程与方法:培养学生观察、归纳、类比、联想和数形结合等发现规律的一般方法。情感态度价值观:让学生经历由实例到抽象的数学定义的形成过程,性质的发现到论证过程,进一步参悟数学的本质。五.教学重点和难点重点是平面向量数量积的概念、用平面向量数量积表示向量的模及夹角;难点是平面向量数量积的定义及运算律的理解,平面向量数量积的应用。六.教学过程设计活动一:创设问题情景,引出新课1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?答:向量的加法、减法及数乘运算。这些运算的结果是向量。很好,那既然两个向量可以进行加法、减法运算。我们自然就想:两个向量能进行乘法运算吗?如果能,结果也是向量吗?【设计意图】1.让学生明白新旧知识的联系性。2.明确研究向量的数量积这种运算的途径。活动二:探究数量积的概念1、给出有关材料并提出问题2:(1)如图所示,一物体在力F的作用下产生位移S,那么力F所做的功:W=|F||S|cos。(2)这个公式有什么特点?请完成下列填空:①W(功)是量,②F(力)是量,③S(位移)是量,④α是。(3)你能用文字语言表述“功的计算公式”吗?答:功是力与位移的大小及其夹角余弦的乘积这就给我们一种启示:能否把功W看成两个向量F和S的一种运算结果呢?为此我们引入平面向量数量积,今天,我们就来学习平面向量的数量积。2、明晰数量积的定义(1)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,我们把数量cosba叫做向量a与b的数量积(或内积),记作:ba,即:cosbaba。(2)定义说明:①记法“ba”中间的“·”不可以省略,也不可以用“”代替。②规定:零向量与任何向量的数量积为零。【设计意图】1.认识向量的数量积的实际背景。2.使学生在形式上认识数量积的定义。3.从数学和物理两个角度创设问题情景,使学生明白为什么研究这种运算,从而产生强烈的求知欲望。3、提出问题3:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?答:线性运算的结果是向量,而数量积的结果则是数量,这个数量的大小不仅和向量a与b的模有关,还和它们的夹角有关。4、学生讨论并完成下表:θ的范围0°≤θ90°θ=90°90°θ≤180°ba的符号【设计意图】引导学生通过自主研究,明确两个向量的夹角决定它们的数量积的SFα符号,进一步从细节上理解向量数量积的定义。5、研究数量积的几何意义(1)给出向量投影的概念:如图,我们把cosb(cosa)叫做向量b在a方向上(a在b方向上)的投影,记做:OB1=cosb(2)提出问题4:数量积的几何意义是什么?答:数量积ba等于a的长度a与b在a的方向上的投影cosb的乘积。【设计意图】这里将数量积的几何意义提前,使学生从代数和几何两个方面对数量积的特征有了更加充分的认识。6、研究数量积的物理意义(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积。(2)尝试练习:一物体质量是10千克,分别做以下运动:①、竖直下降10米;②、竖直向上提升10米;③、在水平面上位移为10米;④、沿倾角为30度的斜面向上运动10米;分别求重力做功的大小。【设计意图】通过尝试练习,一方面使学生尝试计算数量积,巩固对定义的理解;另一方面使学生理解数量积的物理意义,明白学科间的联系,同时也为数量积的性质埋下伏笔。活动三:探究数量积的运算性质1、提出问题5:(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?(2)比较ba与ba的大小,你有什么结论?2、请证明上述结论。3、明晰:数量积的性质设a与b是非零向量,则1、0baba2、babababababa反向时,与当同向时,与当;3、特别地,时当ba22;aaaaaaaaa或4、baba【设计意图】将尝试练习的结论推广得到数量积的运算性质,使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。活动四:探究数量积的运算律1、提出问题6:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?答:①交换律:ab=ba②结合律:(ab)c=a(bc)③分配律:(a+b)c=ac+bc猜想:①abba②)()()(bababa③cbcacba)(2、分析猜想:猜想①的正确性是显而易见的。关于猜想②的正确性,请同学们先讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?答:左边是与向量c共线的向量,而右边则是与向量a共线的向量,显然在向量c与向量a不共线的情况下猜测②是不正确的。【设计意图】要求学生通过对过去所学过的运算律的回顾类比得出数量积的运算律。通过讨论纠错来理解不同运算的运算律不尽相同,看到数学的法则与法则间的相互联系与区别,体会法则,学习研究的重要性。3、明晰:数量积的运算律:已知向量cba,,,则(1)abba(2))()()(bababa(3)cbcacba)(4、学生活动:证明运算律2在证明时,学生可能只考虑到λ0的情况,为了帮助学生完善证明,提出以下问题:当λ0时,向量aa与,bb与的方向的关系如何?此时,向量ba与及ab与的夹角与向量ba与的夹角相等吗?5、师生活动:证明运算律(3)【设计意图】学会利用定义证明运算律(1)(2),运算律(3)的图形构造有些困难,先让学生讨论,后根据学生的情况加以指导或共同完成。活动五:应用与提高1、学生独立完成:已知4,5ba,ba与的夹角θ,(1)ba时,求当120(2)baba时,求【设计意图】通过计算巩固对定义的理解,同时让学生学会运用性质解决问题。2、师生共同完成:已知4,6ba,ba与的夹角为60°,求)3()2(baba,并思考此运算过程类似于哪种实数运算?3、学生独立完成:对任意向量a,b是否有以下结论:(1)2222bbaaba(2)22bababa【设计意图】让学生体会解题中运算律的作用,比较向量运算与数运算的异同。4、反馈练习已知△ABC中,0,,babAcaAB当时,试判断△ABC的形状。【设计意图】1.加强学生的练习。2.通过观察、问答等方式对学生的掌握情况有了进一步的了解和把握。活动六:小结1、本节课我们学习的主要内容是什么?2、平面向量的数量积有哪些应用?3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?4、类比向量的线性运算,我们还应该怎样研究数量积?【设计意图】通过学生讨论总结,加强了学生概念法则的理解和掌握,体会整个内容的研究过程,明白了为什么要学这些内容,学了这些内容可以做什么,这对以后的学习有什么指导意义。活动七:布置作业1、课本P119习题2.4A组1、2、3。2、拓展与提高:已知ba与都是非零向量,且baba573与垂直baba274与垂直,求ba与的夹角。(本题供学有余力的同学选做)【设计意图】通过设计不同层次的作业既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到激发兴趣和“减负”的目的。七.板书设计2.4平面向量的数量积一.向量数量积的定义三.向量数量积的几何意义例21已知两个非零向量a与b1.投影的概念ab=|a||b|cosθ,其中θ是a与b的夹角2规定:0a=02.数量积的几何意义二.向量数量积的重要性质设a与b都是非零向量,θ是a与b的夹角四.运算律向量数量积的运算律例3(1)abab=0(1)ab=ba(交换律)(2)当a与b同向时,ab=|a||b|;(2)(λa)b=λ(ab)=a(λb)(数乘结合律)当a与b反向时,ab=|a||b|;(3)(a+b)c=ac+bc(分配律)八.教学反思本节课从总体上说是一节概念教学,从数学和物理两个角度创设问题情景来引入数量积概念能激发学生的学习兴趣,。通过安排学生讨论影响数量积结果的因素并完成表格和将数量积的几何意义提前有助于学生更好理解数量积的结果是数量而不是向量。数量积的性质和运算律是数量积概念的延伸,这两方面的内容按照创设一定的情景,让学生自己去探究、去发现结论,教师明晰后,再由学生或师生共同完成证明。这样能更清楚地看到数学法则与法则间的联系与区别,体会法则学习研究的重要性,例题和练习的选择都是围绕数量积的概念和运算律展开的,这能使学生更好在掌握概念法则.