铁锰超标水处理方案【摘要】铁锰是人体不可缺少的微量元素,人体内所需要的铁锰主要来源于食物和饮水。然而,水中含铁量过多,也会造成危害。据测定,当水中含铁锰的浓度超过一定限度,就会产生红褐色的沉淀物,生活上,能在白色织物或用水器皿,卫生器具上留下黄斑,同时还容易使铁细菌繁殖堵塞管道。饮用水铁锰过多,会引起身体身体不适。据美国,芬兰科学家研究证明,人体中铁过多对心脏有影响,甚至比胆固醇更危险。我国《生活饮用水卫生标准》(GB5749-85)规定,铁含量≤0.3㎎/L,锰含量≤0.1㎎/L,超过标准的原水须经除铁除锰处理。长时间饮用含铁含锰量过高的水还会严重影响身体健康。因此,高铁高锰水必须经过净化处理才能饮用。1.铁锰超标及对人体和生产的危害1.1铁、锰都属于金属元素,在自然界的岩石和土壤中都很常见,它们往往是一对伴生元素同时存在于天然水中,含铁的地表中或多或少含有一定量的锰。铁锰含量如果超标管网水中会出现黑色颗粒,并伴有水黑或水黄现象。1.2饮用水含高浓度的铁、锰,可引起食欲不振,呕吐,腹泻,胃肠道紊乱,大便失常。长期饮用会出现慢性中毒症状,诱发肝硬化、骨质疏松、行走困难,严重者甚至出现肌肉震颤等症状。1.3在工业用水中,铁锰含量过高会使印染、造纸行业的产品质量下降。在城市供水行业中,高浓度的铁锰的水源不但要增加净水设施,而且还会使制水成本升高,缩短输送管道的使用年限,降低出厂和管网水质,造成了一定程度经济和社会效益的负面影响。国家在《地表水环境质量标准》(GB3838-2002)中对作为集中式生活饮用水地表水源地补充项目的铁、锰指标进行限制:Fe≤0.3mg/L、Mn≤0.1mg/L,《生活饮用水卫生标准》(GB5749-85)规定,铁含量≤0.3㎎/L,锰含量≤0.1㎎/L。2.含铁锰废水分布及特点2.1含铁废水分布及特点:溶解于天然淡水中的铁含量变化很大,从每升几微克到几百微克,甚至超过1毫克。这主要取决于水的氧化还原性质和pH值。在还原性条件下,二价铁占优势;在氧化性条件下,三价铁占优势。二价铁的化合物溶解度大。二价铁进入中性的氧化性条件的水中,就逐渐氧化为三价铁。三价铁的化合物溶解度小,可水解为不溶的氢氧化铁沉淀。三价铁只有在酸性水中溶解度才会增大,或者在碱性较强而部分地生成络离子如Fe(OH)宮时,溶解度才有增加的趋势。因此,在pH值约为6~9的天然水中,铁的含量不高。只有在地下水中,在主要由地下水补给的河段中,以及在湖泊底层水中才有高含量的铁。海洋中铁的平均值为2微克/升。工厂排放的含铁废水酸性很强时,铁含量很高;含铁废水排入天然水体,往往由于酸性降低,产生三价的氢氧化铁沉淀。新生成的胶体氢氧化铁有很强的吸附能力,在河流中能吸附多种其他污染物,而被水流带到流速减慢的地方,如湖泊、河口等处,逐渐沉降到水体底部。在水体底部的缺氧条件下,由于生物作用,三价铁又被还原为易溶的二价铁,其他污染物随铁的溶解而重新进入水中。2.1含锰废水分布及特点:钢铁企业的外排废水中锰浓度相对较高,必须进行深度处理。锰代镍生产不锈钢工艺突破后,电解金属锰的需求量猛增。95%以上的电解锰生产企业是用碳酸锰矿为原料,采用酸浸、复盐电解制锰工艺,在电解锰生产过程中会产生大量的废水,其主要废水污染源是钝化废水、洗板废水、车间地面冲洗废水、滤布清洗废水、板框清洗废水、清槽废水、渣库渗滤液、厂区地表径流和电解槽冷却水等。每生产1t电解锰,大约排放工业废水350t。锰矿石矿井水的一大特点是锰离子含量高。矿井水中的锰是由岩石和矿物中锰的氧化物、硫化物、碳酸盐及硅酸盐等溶解于水所致。氧化过程中锰迁移于水中生成Mn2﹢,因此矿井水中锰主要以Mn2﹢形式存在。矿山开采过程中,从井下排出大量废水废石,污染了河流,占用了大量农田、山林、草场,破坏了生态平衡。2.3.铁锰废水的处理难度:水中锰的危害已引起人们的普遍重视,然而Mn2﹢在中性条件下的氧化速率很慢,难以被溶解氧氧化为二氧化锰。一般来说,在pH值7.0时,地下水中的Fe2﹢的氧化速率已较快,相同的pH值条件下,Mn2﹢的氧化要比Fe2﹢慢得多,因而水中锰的去除比铁要困难得多。在pH值9.0时,Mn2﹢的氧化速率才明显加快,溶解氧才能迅速地将Mn2﹢氧化成MnO2析出,因而最初常通过投加碱性物质提高水的pH值或投加强氧化剂等加快Mn2﹢氧化速率的化学方法除锰。3.铁锰废水处理方案铁锰含量过高的水一般都利用在催化剂(如锰砂)的作用下将溶解状态的二价铁或二价锰分别氧化成不溶解的三价铁或四价锰的化合物,利用锰砂过滤器的反冲洗功能达到去除净化的目的。3.1除铁工艺:地下水中的铁,一般是以二价铁离子状态(Fe2+)存在。当加入氧气时,氧与水中二价铁反应,使二价铁氧化成三价铁(Fe3+),并呈深黄色胶体状态,当这些胶体状态的铁遇到细小的孔隙,便难于通过,即会累积于过虑物表面,并在滤料颗粒表面生成具有接触催化活性的铁质滤膜,这种滤膜可以充分吸附三价铁,最后去除水中过量的铁,使其满足用水要求。其主要反应式如下:Fe2++FeO(OH)→FeO(OFe)++H+FeO(OFe)++O2+H2O→FeO(OH)+H+滤料的成熟期,与地下水的水质,特别是水中含铁量、滤料的粒径、滤层的厚度、滤速等因素有关。水中含铁量在≤10mg/L时,抽水过滤持续到2~3天;含铁量在10~20mg/L时,需持续抽水到7天左右。滤料的滤速为10~15m/h时,可以达到除铁效果;如果需要除锰滤速为≤6m/h,才能达到除锰目的。3.2除锰工艺:(1)碱化除锰法最初采用的除锰方法是将石灰、NaOH等碱性物质投加到含锰废水中,把待处理水的pH值提高到9.5以上,Mn2﹢在溶解氧的作用下迅速地氧化为MnO2析出,从而达到除锰的目的。(2)强氧化剂除锰法采用氧化能力较强的氧化剂是欧洲和美国普遍使用的除锰方法。一般常选用高锰酸钾、二氧化氯和氯气等强氧化剂。(3)接触氧化除锰法20世纪70年代,在接触氧化除铁的基础上发展了天然锰砂接触氧化除锰工艺。天然锰砂接触氧化除锰工艺较为简单,锰砂相关内容:原水经简单曝气后直接进入滤池,水中的Mn2﹢被锰砂吸附氧化去除,无需投加化学药剂,管理方便,处理效果稳定,4)生物除锰法人们很早就认识到微生物对铁锰的氧化作用,但是把微生物引入到地下水除锰领域的历史并不长。生物法除铁、除锰作为一种新的工艺也开始在一些国家研究推广,如法国、德国、保加利亚等国家都有应用,均取得良好效果。4.地下水铁锰超标处理地下水中的铁和锰超标主要存在铁超标或铁锰同时超标两种形态,除铁一般采用接触氧化法或曝气氧化法,除锰一般采用接触氧化法,曝气氧化法除铁系指原水经曝气后充分溶氧和散除CO2,提高pH值,水中的Fe2全部或大部分氧化为Fe3,进入滤池过滤;接触氧化法除铁(除锰)系指原水经曝气溶氧后未经完全氧化很快进入滤池,滤料经过一定的成熟期后在其表面形成铁质(或锰质)活性滤膜,利用活性滤膜的催化作用进行除铁(除锰)。铁、锰超标的地下水水质千差万别,因此除铁、除锰工艺流程的选择,应掌握水处理较详细的原水水质资料,有条件的应进行除铁除锰试验,无条件试验时应参照原水水质相似水厂的经验进行选择。铁锰共存时,原水含铁量低于2.0~5.0mg/L(由于水质的不同,北方可采用2.0、南方可采用5.0)、含锰量低于1.5mg/L,单级过滤一般可同时去除铁和锰,当水中铁锰含量超过上述值时,铁将明显干扰除锰,应采取先除铁后除锰的工艺,并严格控制一级除铁效果。地下水中除铁、锰的工艺流程及设计方案因地下水中含铁、含锰、及其pH值的高低、处理水量的大小不同而不同。当水中含铁量10mg/L,pH=5.5时,设计为一次曝气、一级过滤;当水中含铁量10~20mg/L、pH=5.5时,设计为一次曝气、二级串联过滤;当水中含铁锰均要去除时,原则上先除铁后除锰;当水中含铁、锰量比较低、pH值较高时,可以采用加大罐体直径,减慢滤速,用单级过滤予以去除。当被除铁、除锰的原水pH值6.8时,需向原水加碱或石灰拌搅成碱化溶液,提高pH值后,才能把水中的锰离子去除。当水中含二氧化碳时,应首先将原水进行一次或二次曝气,去除水中的侵蚀性二氧化碳,再除铁、锰。目前针对铁锰超标的地下水我国大部分地区采用专业的除铁除锰装置进行除铁锰经过广东省内特别是湛江地区1000多个事业单位、工矿企业、学校、医院、部队、宾馆等的应用实践,处理后的地下水水质完全达到了饮用或生产要求,受到了应用单位的好评。5.除铁除锰装置使用注意事项除铁除锰装置对滤料和承托层的选择有严格的要求。因此,滤料化学成份稳定性、机械强度、颗粒级配、厚度等,如果设计不合理,会直接关系到处理效果。5.1、滤料的选择地下水除铁锰最常用的滤料有天然锰砂。锰砂呈黑色,要求二氧化锰含量一般在40~50%,粒径0.6~2.0mm,磨损率0.54%,破碎率0.23%,堆比重1.8g/cm3,孔隙率50%。除此之外,还常用天然石英砂、砂砾石,分别作滤料和承托层。石英砂要求粒径0.5~1.2mm,二氧化硅含量98.5%,盐酸可溶率1.5%,含泥量0.04%,比重2.55g/cm3,磨损率0.4%,孔隙率43%,破碎率0.8%,堆比重1.75g/cm3。以上两种滤料具有机械强度高、吸附能力强、化学成份稳定、不含对人体健康有害和有毒的物质成份。5.2、滤料和承托层的厚度滤料和承托层的厚度根据原水中水质和目标水质要求而确定。后者尚需按不同颗粒级配设置多层。5.3、滤层的反冲洗及时间控制滤层经过一段时间使用,会渐被铁泥堵塞,滤层的水头损失随之不断增长。这时如果不及时对滤层反冲洗,会使罐体压力加大,流量变小,直接影响过滤效果。一般对滤层的反冲洗,用反向水流自下而上进行冲洗。通常用滤后水塔水或原井水反冲。每次反冲时间一般在10~15分钟完成。如果反冲洗超过一定限度,便有可能使滤料表面的活性滤膜受到破坏,从而降低滤层的除铁能力,所以滤层的反冲洗时间不宜过长。滤层反冲洗间隔的长短视原水中被处理铁、锰含量高低而定。当水中含铁量较高时,滤层过滤持续24小时/天,间隔1~2天,反冲一次;当水中含铁量较低时,滤层过滤间歇、不连续,间隔可延到5~7天,反冲一次。