19.1.2函数图象第一课时学习目标:1.了解函数图象的意义;2.会观察函数图象获取信息,根据图象初步分析函数的对应关系和变化规律;3.经历画函数图象的过程,体会函数图象建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值.有些问题中的函数关系很难列式子表示,但是可以用图直观地反映,例如用心电图表示心脏部位的生物电流与时间的关系。即使对于能列式表示的函数关系,如果也能画图表示,那么会使函数关系更直观。一、情景引入信息1:如下图是一心电图。信息2:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化。你从图象中得到了哪些信息?正方形面积S与边长x之间的函数解析式为S=x2.思考:(1)这个函数的自变量取值范围是什么?(2)怎样获得组成函数图象的点?先确定点的坐标.问题探究问题:请画出下面问题中能直观地反映函数变化规律的图形:0x>(4)自变量x的一个确定的值与它所对应的唯一的函数值S,是否唯一确定了一个点(x,S)呢?取一些自变量的值,计算出相应的函数值.(3)怎样确定满足函数关系的点的坐标?(1)填写下表:x0.511.522.533.5S0.2512.2546.25912.25问题探究一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.如右图中的曲线就叫函数(x>0)的图象.2=Sx2xS用空心圈表示不在曲线的点用平滑曲线去连接画出的点这样我们就得到了一幅表示S与x关系的图.如点(2,4)表示x=2时S=4。图中每个点都代表x的值与S的值的一种对应关系。1.列表2.描点3.连线1.函数图象定义:一般来说,对于一个函数,如果把自变量和函数的每一对对应值分别作为点的横坐标和纵坐标,那么在坐标平面内由这些点组成的图形,叫做这个函数的图象.画函数图象的步骤:活动一下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化。你从图象中得到了哪些信息?41424t/时8T/℃0横坐标表示,纵坐标表示,随的变化而变化?-3时间温度时间温度T时间tT/℃北京的春季某天气温T随时间t变化而变化的规律如图所示:O34148t/h1.哪个时间温度最高?是多少度?2.哪个时间温度最低?是多少度?3.什么时间段温度在下降?什么时间段温度在上升?4.温度在零度以下的时间长呢?还是在零度以上的时间长?245.曲线与x轴的交点表示什么?思考:P79练习21.在___点和___点的时候,两地气温相同;2.在___点到___点和___点到___点之间,上海的气温比北京的气温要高.3.在__点到__点之间,上海的气温比北京的气温要低.712712071224活动二下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.小明家,菜地,玉米地在同一条直线上。从家到菜地从菜地到玉米地从玉米地回家y/千米x/分o801525375521.1y/千米x/分o801525375521.1小明从家到菜地在菜地浇水从菜地到玉米地给玉米地锄草从玉米地回家你能回答下列问题了吗?y/千米x/分o801525375521.1小明1.从家到菜地用了多少时间?菜地离小明家有多远?2.小明给菜地浇水用了多少时间?3.从菜地到玉米地用了多少时间?菜地离玉米地有多远?4.小明给玉米地锄草用了多少时间?5.玉米地离家有多远?小明从玉米地回家的平均速度是多少?我们通过两个活动已学会了如何观察分析图象信息.现在我们进行巩固练习,看你能否快速、全面而准确地读出函数图象中的信息。(一)、选择题:1.如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是()(A)A比B先出发(B)A、B两人的速度相同(C)A先到达终点(D)B比A跑的路程多2.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是()CD3.小芳今天到学校参加初中毕业会考,从家里出发走10分到离家500米的地方吃早餐,吃早餐用了20分;再用10分赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是().DA.x/分y/米O150010005001020304050B.x/分y/米O15001000500102030405015001000500C.x/分y/米O1020304050D.x/分y/米O1020304050150010005004.某装水的水池按一定的速度放掉水池的一半后,停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水。若水池的存水量为v(立方米),放水或注水的时间为t(分钟),则v与t的关系的大致图象只能是()A5.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是().C(二).小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.小明先走了约3分钟,到达离家250米处的一个阅报栏前看了5分钟报,又向前走了2分钟,到达离家450米处返回,走了6分钟到家。解:四、中考实战甲,乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示,给出下列说法:a.他们都骑了20km;b.乙在途中停留了0.5h;c.甲和乙两人同时到达目的地;d.甲乙两人途中没有相遇过.根据图象信息,以上说法正确的是()BO0.52022.51s/kmt/hA.1个B.2个D.4个C.3个甲乙龟兔赛跑领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已经来不及了,乌龟先到达了终点………现在用和分别表示乌龟、兔子所走的路程,t为时间,则下列图象中,能够表示S和t之间的函数关系式的是()1S2SOX/sS/mOX/sS/mOX/sS/mOX/sS/m1s2s1s2s1s2s1s2sABDCC1、函数图象上点的横、纵坐标分别对应值和的值。自变量函数2、从函数图象中获得的信息来研究实际问题关键要注意分清横轴和纵轴表示的实际含义例:在下列式子中,对于x的每个确定的值。y有唯一的对应值,即y是x的函数.请画出这些函数的图象。(1)y=x+0.56(2)y=(x0)x(1)y=x+0.5解:x取值范围是全体实数值,列表如下:x…-3-2-1012…y……-2.5-1.5-0.50.51.52.5根据表中数值描点(x,y),并用光滑曲线连结这些点.从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.6(2)y=(x0)x自变量的取值范围x0列表:x…0.511.522.534…y……126432.421.5据表中数值描点(x,y)并用光滑曲线连结这些点,就得到图象.从函数图象可以看出,曲线从左向右下降,即当x由小变大时,随之减小.6y=x我们来总结归纳一下描点法画函数图象的一般步骤第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.第二步:描点.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.第三步:连线.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.