升压斩波电路

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1电气工程及自动化专业电力电子技术设计报告姓名:XXXXXX学号:XXXXXXX专业班级:XXXXXX题目:电子时钟(LCD显示)电气与电子工程学院二〇一四年十二月三十2目录一、设计的技术数据及要求………………………………2二、设计内容及要求………………………………2三、电路各原件的参数设定………………………………5四、控制电路设计………………………………8五、MOSFET驱动电路设计………………………………10六、保护电路………………………………11七、总电路图………………………………14八、仿真电路………………………………14九、总结及心得体会………………………………16十、参考文献………………………………..173电源整流电路升压斩波电路保护电路驱动控制电路一、设计的技术数据及要求1、交流电源:单相220V;2、前级整流输出输电压:Ud=50V~100V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%—90%;6、输出电压脉率:小于10%。二、设计内容及要求1、方案的论证及方案的选择:1.1总体方案论证2、主电路的设计2.1整流电路的设计整流电路尤其是单相桥式可控整流电路是电力电子技术中最为重要,也是应用最为广泛的电路。不仅应用于工业,也广泛应用于交通运输,电力系统,通信系统,能源系统等其他领域。本实验装置采用单相桥式全控整流电路(所接负载为纯电阻负载),如图4所示。4在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。在u2正半周(即a点电位高于b点电位),若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4的漏电阻相等,则各承受u2的一半。若在触发角α处给VT1和VT4加触发脉冲,VT1、VT4即导通,电流从a端经VT1、R、VT4流回电源b端。当u2为零时,流经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发延迟角α处触发VT2和VT3(VT2和VT3的α=0处为ωt=π),VT2和VT3导通,电流从电源的b端流出,经VT3、R、VT2流回电源a端。到u2过零时,电流又降为零,VT2和VT3关断。此后又是VT1和VT4导通。如此循环工作下去。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。图5是电阻性负载的单项桥式全控整流电路波形图。5整流电压平均值为:向负载输出的直流电流平均值为:流过晶闸管的电流平均值为:题目中要求前级整流输出电压限制在50V—100V之间,输入电压U1为220V,则输入电压U2最大为41.7,变压器匝数比N1:N2=4:1。MOSFET升压斩波电路原理图升压斩波电路的原理图以及工作波形如图2所示。该电路使用一个全控型器件V,图中为MOSFET。为在MOSFET关断时给负载中电感电流提供通道。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等假设L和C值很大。处于通态时,电源E向电感L充电,电流恒定1i,电容C向负载R供电,输出电压0u恒定。断态时,电源E和电感L同时向电容C充电,并向负载提供能量。设V通态的时间为ont,此阶段L上积蓄的能量为ontEi1,设V断态的时间为offt,则此期间电感L释放能量为offtiEu10)(稳态时,一个周期T中L积蓄能量与释放能量相等:ontEi1=offtiEu10)(2cos129.0)(sin221UttdUUdIIddvT21RUddI6化简得EtTEtttuoffoffoffon0offtT——升压比;升压比的倒数记作β,即offtTβ和α的关系:a+β=1所以输出电压为EEu1110三、电路各元件的参数设定1、MOSFET简介MOSFET的原意是:MOS(MetalOxideSemiconductor金属氧化物半导体),FET(FieldEffectTransistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(MetalOxideSemiconductorFET),简称功率MOSFET(PowerMOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(StaticInductionTransistor--SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。2、功率MOSFET的结构功率MOSFET的内部结构和电气符号如图6所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET,(VerticalMOSFET),大大提高了MOSFET器件的耐压和耐电流能力。7图6MOSFET的结构与电气图形符号3、功率MOSFET的工作原理截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子-电子吸引到栅极下面的P区表面。当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。4、各元件参数计算由于=/=2/1,故变压器匝数比为2:1.=311.2~466.8。取500V取=80V,由于,代入8,故整流器的输出平均电流为3.75A。流过晶闸管电流的有效值为考虑两倍的安全裕量,流过晶闸管的额定电流为取,故晶闸管型号为:2CZ13F过MOSFET最大电压为由升降压斩波电路输出电流的平均值,得C=T为开关频率,T=2*S,根据设计要求可选大小为50oUV的直流电压源,如果选取升压斩波电路的占空比为50%,则输出电压100v,输出功率2ooUPR,要求输出功率为300W,可计算出负载电阻8.33R。电压控制电压源和脉冲电压源可组成MOSFET功率开关的驱动电路。计算CL:由式,周期T可由开关频率5KHz得出为4210s,把oU、、oP代入上式得出44.1710CLH。虽说电感L的值越大,得到的图形越稳定,但在此电路中,需要看到文波,因此按计算值设置参数就可以啦。计算C:由式,要求脉动率10%,取10%,计算,代入上式计算出。虽说电容C的值越大,得到的图形越稳定,但在此电路中,需要看到文波,因此按计算值设置参数就可以啦。9四、控制电路设计SG3525是一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动功能;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。其特点如下:(1)工作电压范围宽:8—35V。(2)5.1(11.0%)V微调基准电源。(3)振荡器工作频率范围宽:100Hz—400KHz.(4)具有振荡器外部同步功能。(5)死区时间可调。(6)内置软启动电路。(7)具有输入欠电压锁定功能。(8)具有PWM琐存功能,禁止多脉冲。(9)逐个脉冲关断。(10)双路输出(灌电流/拉电流):mA(峰值)。SG3525内置了5.1V精密基准电源,微调至1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。SG3525内部结构如图2.5所示,直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的元器件作为电源。振荡器脚5须外接电容CT,脚6须外接电阻RT。振荡器频率由外接电阻RT和电容CT决定,振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出,误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波10脉冲送到或非门的一个输入端。其他引脚分别为:引脚1为反相输入,2为同相输入引脚,3为同步端引脚,4为振荡器输出引脚,7为放电端引脚,8为软启动端引脚,9为补,10为闭锁控制引脚,引脚12接地。五、MOSFET驱动电路设计1、驱动电路方案选择该驱动部分是连接控制部分和主电路的桥梁,该部分主要完成以下几个功能:(1)提供适当的正向和反向输出电压,使电力MOSFE管可靠的开通和关断;(2)提供足够大的瞬态功率或瞬时电流,使MOSFET能迅速建立栅控电场而导通;(3)尽可能小的输入输出延迟时间,以提高工作效率;(4)足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘;(5)具有灵敏的过流保护能力。而电力MOSFET是用栅极电压来控制漏极电流的,因此它的第一个显著特点是驱动电路简单,需要的驱动功率小;第二个显著特点是开关速度快、工作频率高。但是电力MOSFET电流容量小,耐压低,多用于功率不超过10Kw的电力电子装置。在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁隔离的优点,是中小功率变换装置中驱动器件的首选。11根据设计要求、驱动要求及电力MOSFET管开关特性,选择驱动芯片IR2110来实现驱动。2、驱动电路原理IR2110内部功能由三部分组成:逻辑输入、电平平移及输出保护。IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二极管,C2为VCC的滤波电容。假定在S关断期间C1已经充到足够的电压(VC1VCC)。当HIN为高电平时如下图11,VM1开通,VM2关断,VC1加到S1的栅极和源极之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电压源,从而使S1导通。由于LIN与HIN是一对互补输入信号,所以此时LIN为低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断。设计驱动电路如图所示:六、电路保护电力电子电路中,除了电力电子器件参数选择合适,驱动电路设计良好外,采用合适的过电压保护、过电流保护、du/dt保护和di/dt也是必须的。抑制过电压的方法:用非线性元件限制过电压的幅度,用电阻消耗生产过电压的能量,用储能元件吸收生产过电压的能量。对于非线性元件,不是额定电压小,使用麻烦,就是不宜用于抑制频繁出现过电压的场合。所以我们选用用储能元件吸收生产过电压的能量的保护。使用12RC吸收电路,这种保护可以把变压器绕组中释放出的电磁能量转化为电容器的电场能量储存起来。由于电容两端电压不能突变,所以能有效抑制过电压,串联电阻消耗部分产生过电压的能量,并抑制LC回路的震动。保护电路如图13所示。过压保护电路图除此之外还有其他的保护装置,如下:1、防止阳极电压上升率过高保护在保护电路中串联接入适当的电感即可起到防止阳极电压上升率过高的保护。2、晶闸管的过电压保护晶闸管的过电压能力较差,当它承受超过反向击穿电压时,会被反向击穿而损坏。如

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功