贝克休斯水平井随钻测井技术

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

贝克休斯公司随钻测井技术贝克休斯北亚区地科部高级地质科学师:曹叶红Email:yehong.cao@bakerhughes.com2013年4月©2010BakerHughesIncorporated.AllRightsReserved.2贝克休斯随钻测井技术及发展Complexity©2010BakerHughesIncorporated.AllRightsReserved.3贝克休斯随钻测井工具系列OnTrakTM–随钻自然伽玛和电阻率测井及钻井动态信息AziTrakTM–随钻方位电阻率测井LithoTrakTM–随钻中子密度孔隙度测井SoundTrakTM–随钻声波测井TesTrakTM–随钻地层压力测试器StarTrakTM–随钻高分辨率电阻率成像测井MagTrakTM–随钻核磁共振测井ZoneTrakTM–随钻钻头电阻率测井SeismicTrakTM–随钻地震服务©2010BakerHughesIncorporated.AllRightsReserved.4贝克休斯公司随钻地层评价技术©2010BakerHughesIncorporated.AllRightsReserved.5OnTrakTM–随钻自然伽玛和电阻率测井AziTrakTM–随钻方位电阻率测井LithoTrakTM–随钻中子密度孔隙度测井SoundTrakTM–随钻声波测井TesTrakTM–随钻地层压力测试器StarTrakTM–随钻高分辨率电阻率成像测井MagTrakTM–随钻核磁共振测井ZoneTrakTM–钻头电阻率贝克休斯公司成像技术©2010BakerHughesIncorporated.AllRightsReserved.6贝克休斯随钻测井工具组合BCPMAutoTrakG3双向通讯和导电模块AutoTrakG3导向短节ATKG3OnTrak™OnTrak传感器模块井筒压力4.7m(15.4ft)自然伽玛+自然伽玛成像5.0m(16.4ft)电阻率6.1m(20.0ft)方位7.8m(25.6ft)振动和粘滑7.8m(25.6ft)TesTrak™井斜1.0m(3.1ft)地层压力测试器LithoTrakTM体积密度+密度成像15.6m(51.2ft)井径校正中子孔隙度18.0m(59.0ft)井径16.0m(52.5ft)22.1m(72.5ft)45.0m(147.6ft)34.3m(112.5ft)核磁共振声波MagTrak™SoundTrak™©2010BakerHughesIncorporated.AllRightsReserved.7随钻测井©2010BakerHughesIncorporated.AllRightsReserved.8OnTrak–随钻自然伽玛和电阻率测井©2010BakerHughesIncorporated.AllRightsReserved.9•仪器特点–双收四发–2个发射频率:2MHz和400kHz–2种收发距离:近(23”),远(35”)–2套测量参数:相位和衰减–补偿接收装置测量结果–32条原始测量曲线–8条补偿电阻率曲线•参数–适用于各种类型泥浆–可用于57/8”-26”井眼的测量–最大测量温度150ºCOnTrak简介©2010BakerHughesIncorporated.AllRightsReserved.10TransmitterReceiver1Receiver2Signal1Signal2Amplitude1Amplitude2Amplitude1Amplitude2Attenuation=PhaseDifference发射器发射电磁波电磁波信号进入地层传播方向与仪器方向垂直相交电磁波在地层传播过程中,频率保持不变,而相位和波幅则因地层电阻率而改变接收器接收电磁波测量相位的改变测量幅度的衰减电阻率测量原理©2010BakerHughesIncorporated.AllRightsReserved.112MHz补偿电阻率•注意:400kHz具有相同的模式P42HMA42HMP41HMA41HMP31HMA31HMP32HMA32HMT2R2R1T1T4T3P22HMA22HMP12HMA12HMP21HMA21HMP11HMA11HMPD12HMAT12HMPDBCHXATBCHXRPCSHMRACSHMRPCSHXRACSHXPD34HMAT34HMPDBCSHXATBCSHXRPCHMRACHMRPCHXRACHX3地面电脑的处理步骤1)应用空气零长2)电阻率转换3)井眼校正井下工具计算相位差和衰减电阻率长源距短源距井下工具计算相位差和衰减电阻率3地面电脑的处理步骤1)应用空气零长2)电阻率转换3)井眼校正©2010BakerHughesIncorporated.AllRightsReserved.12探测深度Rt=1/Rxo=0.1Rt=10/Rxo=1Rt=100/Rxo=10衰减相位差探测半径©2010BakerHughesIncorporated.AllRightsReserved.13随钻测井与电缆测井的电阻率对比WIRELINELOG01LOG01LOG01GAMMARAY0150x080x090x000x010x020x030x040x050x060x070x080DEPTHMETRES2MHzShortSpaced2MHzLongSpaced400kHzShortSpaced400KHzLongSpacedLOGOhmm01PHASEDIFFERENCERESISTIVITIESOhmm0.22000LOGOhmm01ATTENUATIONRESISTIVITIESOhmm0.2200010”20”35”60”LOGOhmm01FIXEDDEPTHRESISTIVITIESOhmm0.22000ARRAYINDUCTION0.22000MWD400kHzShortSpaced2MHzLongSpaced2MHzShortSpaced90”60”30”20”10”400KHzLongSpaced©2010BakerHughesIncorporated.AllRightsReserved.14MPR/OnTrak电阻率优势…地质导向应用标准的2MHz电阻率放在钻具组合后40-50ft由于探测深度浅,只能确认已钻出油藏近钻头浅探测电阻率只能确认已钻地层MPR/OnTrak置于马达后–400KHz与2MHz电阻率的结合,使探测深度的增加,探头距钻头的距离变得不再重要当然,最好的配置是深浅电阻率联合应用,且离钻头尽可能的近,这样可更早探测到层界面.从而避免钻出油藏©2010BakerHughesIncorporated.AllRightsReserved.15第一趟钻第七趟钻第六趟钻第七趟钻随钻测井的时间推移响应电阻率侵入剖面—1天后电阻率:10↓8欧姆米含油饱和度:52%↓47%--5%第六趟钻第七趟钻电阻率侵入剖面—10天后电阻率:20↓13欧姆米含油饱和度:73%↓66%--7%第一趟钻第七趟钻Fixed-DOIAdvancedResistivityProcessing–MPRTEQFlowDiagramRawPhaseandAttenuationMeasurementsBoreholeCorrectionsFirstInversion–ShoulderBedEffectsRemovedResolutionMatchingSecondInversion–Anisotropy,DielectricConstantsandInvasionCoefficientsCalculatedCorrectionsMadeforDielectric,andAnisotropyEffectsLinearCombinationofInvertedResistivitiesFixed-DOIResistivities(10”,20”,35”&60”)RadiiFixed-DOIAdvancedResistivityProcessing–MPRTEQTheAdvantageofGettingtotheReservoirFirst–GoMExampleGammaRayOnTrakTrueResolutionResistivityWireline1ft-VerticalResolutionMatchedResistivityConductiveInvasionProcessedFixed-DOIResistivityEnhancedResistivitiesLWDTSD30minsWLTSD24hrsLWDPostProcessedFixed-DOIAdvancedResistivityProcessing–MPRTEQTheAdvantageofGettingtotheReservoirFirst–GoMExampleAddedHydrocarbons(UsingLWD)WLLWDLWDWLTSD24hrsTSD30minsTSD24hrsTSD30minsNetPayLWDNetPayWireline©2010BakerHughesIncorporated.AllRightsReserved.19自然伽玛–方位成像©2009BakerHughesIncorporated.AllRightsReserved.SectoredGammaRayImageGammaRay©2010BakerHughesIncorporated.AllRightsReserved.20准确的ECD随钻评价可早期识别钻井风险,进行实时决策实时决策-ECD–井眼清洁©2009BakerHughesIncorporated.AllRightsReserved.©2010BakerHughesIncorporated.AllRightsReserved.21LithoTrak–随钻中子密度孔隙度测井LithoTrak™--随钻中子密度孔隙度测井•井眼定位–增强油藏地质导向–加快数据采集速率–由高分辨率密度成像实时进行地层倾角拾取•油藏特征–准确、实时密度和中子测量–可靠的获取数据–降低井眼校正•消除钻井风险–高ECD环境下的安全性–改善井眼整体性评价–方位井径成像After30minutesdrilling©2010BakerHughesIncorporated.AllRightsReserved.23密度的测量原理•密度测量的是伽玛射线与物质的相互作用所产生的低能量伽马射线的能量。•Cesium137放射源发出伽玛射线•伽玛射线进入地层,两个探头测量经与地层发生康谱顿散射返回的低能量伽玛射线数量.泥岩砂岩放射源长源距探头短源距探头©2010BakerHughesIncorporated.AllRightsReserved.24随钻测井与电缆测井的测量环境对比电缆测井随钻测井电缆测井需要校正泥饼随钻测井需要校正泥浆泥岩砂岩地层泥饼放射源短源距探测器长源距探测器泥浆©2010BakerHughesIncorporated.AllRightsReserved.25随钻测井与电缆测井的孔隙度对比LWDLWDLWDLWD准确的放射性测量值©2010BakerHughesIncorporated.AllRightsReserved.26LithoTrak应用LWDGammaRayAPI20120WirelineGammaRayAPI20120WirelineSPmV40140WirelineDelta-Tus/ft5015012900RES10ohm-m0.220RES20ohm-m0.220RES35ohm-m0.220RES60ohm-m0.220DensityPorositypu600NeutronPorositypu600UltrasonicCaliperinches8.518.5Delta-Rhog/cc-0.40.1M2R1ohm-m0.220M2

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功