专题复习:解直角三角形的应用教案复习目标:(1)正确地建立解直角三角形的数学模型以及熟悉测量,航海,航空,工程等实际问题中的常用概念是解决这类问题的关键.(2)准确理解几个概念:①仰角,俯角;②坡角;③坡度;④方位角.复习重难点(1)将实际问题抽象为数学问题的关键是画出符合题意的图形.(2)在一些问题中要根据需要添加辅助线,构造出直角三角形从而转化为解直角三角形的问题.复习过程一、识记巩固1.复习锐角三角函数的意义.2.复习特殊角度三角函数值.3.有关概念梳理(1)如图(1)仰角是____________,俯角是____________.(2).如图(2)方向角:OA:_____,OB:_______,OC:_______,OD:________.(3).如图(3)坡度:AB的坡度iAB=_______,∠α叫_____,tanα=i=____.[来源:学+科+网]二、典例:命题方向:方位角问题.例1:(2013湖北黄石)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必ACB45南北西东60ADCB70OOABC须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.命题方向:仰角、俯角问题例2:如图1,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30°.两人相距28米且位于旗杆两侧(点B,N,D在同一条直线上).请求出旗杆MN的高度.小结:日常生活中的很多问题可以转化为直角三角形的问题,需要注意以下几个环节:(1)审题,认真分析题意,将已知元素和未知元素弄清楚,找清已知条件中各量之间的关系,根据题目中的已知条件,画出它的平面图或截面示意图。(2)明确题目中的一些名词、术语的含义,如仰角、俯角、跨度、坡角、坡度、方位角等。(3)是直角三角形的,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决。(4)确定合适的边角关系,细心推理计算。(5)在解题过程中,既要注意解有关的直角三角形,也应注意到有关线段的增减情况.三、课堂练习1.图1是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.2mB.4mC.3mD.8mEABCD150°图1h2.(2013辽宁锦州)如图,某公园入口处有一斜坡AB,坡角为12°,AB长为3m.施工队准备将斜坡建成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126,结果都精确到0.1cm).(1)求AC的长度;(2)每级台阶的高度h.•3.(2013贵州贵阳)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的高度忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留根号)4.(2013青海省)如图13,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34米,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号).5、(2013青海省)如图13,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34米,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号).5、(2013四川巴中)2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度(结果精确到0.1米)四、课堂总结。