华师大八年级下第17章函数及其图象与情境综合题专训有答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

华师大版八年级下册第17章函数及其图象与情境综合题专训一、利用情境判断函数图象试题1、一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是(C)试题2、如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合时停止运动.运动过程中,△GEF与矩形ABCD(AB>EF)重合部分的面积(S)随时时间(t)变化的图象大致是(B)A.B.C.D.试题3、5月9日,邓紫棋演唱会在重庆国际博览中心举办,小王从家出发乘坐出租车前往观看,演出结束后,小王搭乘邻居小周的车回到家.己知小王出发时的速度比回家时的速度快,其中x表示小王从家出发后所用时间,y表示小王离家的距离.下面能反映y与x的函数关系的大致图象是(B)A.B.C.D.试题4、某班学生在参加做豆花的实践活动中,计划磨完一定量的黄豆,在磨了一部分黄豆后,大家中途休息并交流磨黄豆的体会,之后加快速度磨完了剩下的黄豆,设从开始磨黄豆所经过的时间为t,剩下的黄豆量为s,下面能反映s与t之间的函数关系的大致图象是()A.B.C.D.试题5、地铁1号线是重庆轨道交通线网东西方向的主干线,也是贯穿中区和沙坪坝区的重要交通通道,它的开通极大地方便了市民的出行,现某同学要从沙坪坝南开中学到两路口,他先匀速步行至沙坪坝地铁站,等了一会,然后搭乘一号线地铁直达两路口(忽略途中停靠站的时间).在此过程中,他离南开中学的距离y与时间x的函数关系的大致图象是(C)A.B.C.D.试题6、自从政府补贴为某农村学校购买了校车后,大大缩短了该校学生小明的上学时间.某天,小明先步行一段路程后,等了一会儿校车,然后坐上校车来到学校.设小明该天从家出发后所用的时间为t,与学校的距离为s.下面能反映s与t之间函数关系的大致图象是(D)A.B.C.D.试题7、2015年4月25日14时11分,尼泊尔发生8.1级大地震,波及我国西藏自治区,其中聂拉木县受灾严重,我解放军某部火速向灾区救援,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们离出发地的距离S(千米)与行进时间t(小时)的函数大致图象,你认为正确的是(C)A.B.C.D.试题8、一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是(C)A.B.C.D.试题9、如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是(B)试题10、如图,把正方形ABCD绕它的中心O顺时针旋转,得到正方形A’B’C’D’,旋转角大于0°小于90°.△A’EF的面积为S,线段AE的长度为x,那么S关于x的函数的图象可能是(B)2034500Ot(小时)y(千米)102034500Ot(小时)y(千米)102034500Ot(小时)y(千米)2034500Ot(小时)y(千米)SxOSnOSxOSxOFEC'D'A'B'ODACB二、利用函数图象判断情境试题1、在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是(B)A.前30分钟,甲在乙的前面B.这次比赛的全程是28千米C.第48分钟时,两人第一次相遇D.甲先到达终点试题2、某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/小时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/小时以上结论正确的是____①_②_④__________.试题3、甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计。两组各自加工零件的数量y(件)与时间x(时)的函数图象如图。以下说法错误的是(D)ABCDA、甲组加工零件数量y与时间x的关系式为40yxB、乙组加工零件总量280mC、经过122小时恰好装满第1箱D、经过344小时恰好装满第2箱试题4、甲乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲乙两车离开A城的距离Y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,则下列结论,其中正确的结论有()①A,B两城相距300千米.②乙车比甲车晚出发1个小时,却早到1小时.③乙车出发后2.5小时追上甲车.④当甲乙两车相距50千米时,515,44ttA.1个B.2个C.3个D.4个试题5、已知重庆和程度相距340千米,甲车早上八点从重庆出发往成都运送物资,行驶1小时后,汽车突然出现故障,立即通知技术人员乘乙车从重庆赶来维修(通知时间不计),乙车达到后经30分钟修好甲车,然后以原速返回重庆,同时甲车以原来速度的1.5倍继续前往成都。两车分别距离成都的路程y(千米)与甲车所用时间x(小时)之间的函数图象如图所示,下列四个结论:①甲车提速后的速度是90千米/时;②乙车的速度是70千米/时;③甲车修好的时间为10点15分;④甲车达到成都的时间为13点15分,其中,正确的结论是____(填序号)试题6、已知A、B两地相距630千米,在A、B之间有汽车站C站,如图1所示.客车由A地驶向C站、货车由B地驶向A地,两车同时出发,匀速行驶,货车的速度是客车速度的.图2是客、货车离C站的路程y1、y2(千米)与行驶时间x(小时)之间的函数关系图象.则下列说法不正确的是(C)A.货车行驶2小时到达C站B.货车行驶完全程用时14小时C.图2中的点E的坐标是(7,180)D.客车的速度是60千米∕时试题7、向某一容器中注水,注满为止,表示注水量与水深的函数关系的图像大致如有图所示,则该容器可能是(D)A.B.C.D.试题8、星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是(C)A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟试题9、甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是(B)A.4B.3C.2D.1三、综合运用试题1、如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是___①③④_______(填序号).试题2、如图:小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中。如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图。则小明的家和小亮的家相距2900米。试题3、甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,ys与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发_____15_____秒.试题4、甲、乙两车分别从A、B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则BC两地相距300千米.试题5、心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.试题6、(2015辽宁省朝阳,第23题10分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.解:(1)当0≤a≤4时,设b=ka,把(4,12)代入得4k=12,解得k=3,所以b=3a;当a>4,设b=ma+n,把(4,12),(8,32)代入得,解得,所以b=5a﹣8;(2)∵1≤x≤3,∴y=750x+3mx+(8﹣x)×700+[5(8﹣x)﹣8]2m=(50﹣7m)x+5600+64m,当m>时,到A公司买3吨,到B公司买5吨,费用最低;当m<时,到A公司买1吨,到B公司买7吨,费用最低.点评:本题考查了一次函数的应用:分段函数是在不同区间有不同对应方式的函

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功