2020年中考数学三轮复习精准训练:二次函数压轴题汇编(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新领航在线课堂新领航在线课堂(中考三轮复习精准训练)2020年中考数学模拟试卷:二次函数压轴题汇编1.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.2.如图a,已知抛物线y=﹣x2+bx+c经过点A(4,0)、C(0,2),与x轴的另一个交点为B.(1)求出抛物线的解析式.(2)如图b,将△ABC绕AB的中点M旋转180°得到△BAC′,试判断四边形BC′AC的形状.并证明你的结论.(3)如图a,在抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC全等?若存在,请直接写出点D的坐标;若不存在请说明理由.新领航在线课堂新领航在线课堂3.如图,已知二次函数y=x2﹣2x+m的图象与x轴交于点A、B,与y轴交于点C,直线AC交二次函数图象的对称轴于点D,若点C为AD的中点.(1)求m的值;(2)若二次函数图象上有一点Q,使得tan∠ABQ=3,求点Q的坐标;(3)对于(2)中的Q点,在二次函数图象上是否存在点P,使得△QBP∽△COA?若存在,求出点P的坐标;若不存在,请说明理由.4.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+MA的最小值.新领航在线课堂新领航在线课堂5.如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)如图2,直线AD:y=x+1与y轴交于点D,P点是x轴上一个动点,过点P作PG∥y轴,与抛物线交于点G,与直线AD交于点H,当点C、D、H、G四个点组成的四边形是平行四边形时,求此时P点坐标.(3)如图3,连接AC和BC,Q点是抛物线上一个动点,连接AQ,当∠QAC=∠BCO时,求Q点的坐标.6.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标1.新领航在线课堂新领航在线课堂7.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点D,点C是BD的中点时,求直线BD和抛物线的解析式,(3)在(2)的条件下,点P是直线BC下方抛物线上的一点,过P作PE⊥BC于点E,作PF∥AB交BD于点F,是否存在一点P,使得PE+PF最大,若存在,请求出该最大值;若不存在,请说明理由.8.已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.新领航在线课堂新领航在线课堂9.如图①,在平面直角坐标系中,抛物线y=x2的对称轴为直线l,将直线l绕着点P(0,2)顺时针旋转∠α的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若∠α=45°,求直线AB的函数表达式;(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线l∥x轴,点M是直线l上一点,且位于y轴左侧,当以P,B,Q为顶点的三角形与△PAM相似时,求M的坐标.10.如图,Rt△FHG中,∠H=90°,FH∥x轴,=0.6,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数y1=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点E(0,﹣3),顶点为C(1,﹣4),点D为二次函数y2=a(x﹣1﹣m)2+0.6m﹣4(m>0)图象的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图象上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图象对称轴右侧曲线分别交于点P、Q.且P、新领航在线课堂新领航在线课堂Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值,并判断以C、D、Q、P为顶点的四边形形状,请说明理由.11.如图,点P是二次函数y=﹣+1图象上的任意一点,点B(1,0)在x轴上.(1)以点P为圆心,BP长为半径作⊙P.①直线l经过点C(0,2)且与x轴平行,判断⊙P与直线l的位置关系,并说明理由.②若⊙P与y轴相切,求出点P坐标;(2)P1、P2、P3是这条抛物线上的三点,若线段BP1、BP2、BP3的长满足,则称P2是P1、P3的和谐点,记做T(P1,P3).已知P1、P3的横坐标分别是2,6,直接写出T(P1,P3)的坐标.12.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由;新领航在线课堂新领航在线课堂(3)点P是直线BC上方抛物线上的点,若∠PCB=∠BCO,求出P点的到y轴的距离.13.如图,已知抛物线y=ax2+bx+c的图象经过点A(3,3)、B(4,0)和原点O,P为直线OA上方抛物线上的一个动点.(1)求直线OA及抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,并与直线OA交于点C,当△PCO为等腰三角形时,求D的坐标;(3)设P关于对称轴的点为Q,抛物线的顶点为M,探索是否存在一点P,使得△PQM的面积为,如果存在,求出P的坐标;如果不存在,请说明理由.14.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)如图1,若抛物线的对称轴为直线x=﹣3,AB=4.①点A的坐标为(,),点B的坐标为(,);②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标.新领航在线课堂新领航在线课堂15.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数的解析式;(2)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P的坐标.新领航在线课堂新领航在线课堂参考答案1.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.解:(1)∵二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),∴,解得;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,C(3,0),∵点P到A,B两点的距离相等,∴点P在抛物线的对称轴x=1上,∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,令x=1,则y=﹣1+3=2,∴P(1,2),设平移后的新抛物线的解析式为y=﹣(x﹣h)2+4,∵新抛物线经过点P,∴2=﹣(1﹣h)2+4,解得h1=1+,h2=1﹣,∴新抛物线的顶点坐标为(1+,4)或(1﹣,4)..如图a,已知抛物线y=﹣x2+bx+c经过点A(4,0)、C(0,2),与x轴的另一个交点为B.(1)求出抛物线的解析式.(2)如图b,将△ABC绕AB的中点M旋转180°得到△BAC′,试判断四边形BC′AC的形状.并证明你的结论.(3)如图a,在抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC全等?若存在,请直接写出点D的坐标;若不存在请说明理由.解:(1)将点A、C的坐标代入抛物线表达式并解得:b=1,c=2,故:抛物线的解析式为:y=﹣x2+x+2;(2)四边形BC′AC为矩形.抛物线y=﹣x2+x+2与x轴的另一个交点为:(﹣1,0)由勾股定理求得:BC=,AC=2,又AB=5,由勾股定理的逆定理可得:△ABC直角三角形,故∠BCA=90°;已知,△ABC绕AB的中点M旋转180o得到△BAC′,则A、B互为对应点,由旋转的性质可得:BC=AC',AC=BC'所以,四边形BC′AC为平行四边形,已证∠BCA=90°,∴四边形BC′AC为矩形;(3)存在点D,新领航在线课堂新领航在线课堂使得以A、B、D三点为顶点的三角形与△ABC全等,则点D与点C关于函数对称轴对称,故:点D的坐标为(3,2).3.如图,已知二次函数y=x2﹣2x+m的图象与x轴交于点A、B,与y轴交于点C,直线AC交二次函数图象的对称轴于点D,若点C为AD的中点.(1)求m的值;(2)若二次函数图象上有一点Q,使得tan∠ABQ=3,求点Q的坐标;(3)对于(2)中的Q点,在二次函数图象上是否存在点P,使得△QBP∽△COA?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)设对称轴交x轴于点E,交对称轴于点D,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;新领航在线课堂新领航在线课堂(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3x(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BQ的表达式为:y=﹣(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣,故点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.4.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+MA的最小值.解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,新领航在线课堂新领航在线课堂∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功