5.阻抗和导纳①阻抗正弦稳态情况下IZU+-无源线性IU+-zφZIUZ||定义阻抗iuz单位:IUZ阻抗模阻抗角欧姆定律的相量形式当无源网络内为单个元件时有:RIUZLjXLjIUZCjXCjIUZ1IRU+-Z可以是实数,也可以是虚数ICU+-ILU+-②RLC串联电路由KVL:.......1jjICILIRUUUUCLRIXXjRICLjRCL)]([)]1([IjXR)(LCRuuLuCi+-+-+-+-uRzZjXRCjLjRIUZ1.IjL.ULU.CU.Cωj1R+-+-+-+-RU.Z—复阻抗;R—电阻(阻抗的实部);X—电抗(阻抗的虚部);|Z|—复阻抗的模;z—阻抗角。转换关系:arctg||22RXφXRZz或R=|Z|coszX=|Z|sinz阻抗三角形|Z|RXziuzIUZ分析R、L、C串联电路得出:(1)Z=R+j(L-1/C)=|Z|∠z为复数,故称复阻抗(2)L1/C,X0,z0,电路为感性,电压领先电流;相量图:选电流为参考向量,三角形UR、UX、U称为电压三角形,它和阻抗三角形相似。即CUIRULUUzUX22XRUUU0i.IjL’.UXU.R+-+-+-RU.等效电路L1/C,X0,z0,电路为容性,电压落后电流;L=1/C,X=0,z=0,电路为电阻性,电压与电流同相。CUIRULUUzUX22XRUUU.I.UXU.'j1CR+-+-+-RU.等效电路CUIUURLU.I.UR+-+-RU.等效电路例已知:R=15,L=0.3mH,C=0.2F,.Hz103)60sin(254ftu求i,uR,uL,uC.解其相量模型为:V605UCLRZ1jjΩjjj5.56103.0103234LΩjπj1j5.26102.01032164C5.265.5615jjΩo4.6354.33LCRuuLuCi+-+-+-+-uR.IjL.ULU.CU.Cωj1R+-+-+-+-RU.A4.3149.04.6354.33605oooZUI则Aωo)4.3(sin2149.0tiUL=8.42U=5,分电压大于总电压。ULUCUIRU-3.4°相量图V4.3235.24.3149.015ooIRURV4.8642.84.3149.0905.56joooILULV4.9395.34.3149.0905.26C1joooIUCVo)4.3sin(2235.2tωuRVo)6.86sin(242.8tωuLVo)4.93sin(295.3tωuC注③导纳正弦稳态情况下IYU+-无源线性IU+-yφYUIY||定义导纳uiy单位:SUIY导纳模导纳角ZYYZ1,1对同一二端网络:当无源网络内为单个元件时有:GRUIY1LjBLjUIY/1CjBCjUIYIRU+-ICU+-ILU+-Y可以是实数,也可以是虚数④RLC并联电路由KCL:CLRIIIIiLCRuiLiC+-iLj1jUCULUG)j1j(UCLG)j([UBBGCL)j(UBG.IjL.ULI.CI.Cωj1RI.R+-yYjBGLjCjGUIY1Y—复导纳;G—电导(导纳的实部);B—电纳(导纳的虚部);|Y|—复导纳的模;y—导纳角。转换关系:arctg||22GBφBGYy或G=|Y|cosyB=|Y|siny导纳三角形|Y|GByuiyUIY(1)Y=G+j(C-1/L)=|Y|∠y数,故称复导纳;(2)C1/L,B0,y0,电路为容性,电流超前电压相量图:选电压为参考向量,2222)(CLGBGIIIIIIUGI.CI.IyLI.0u分析R、L、C并联电路得出:三角形IR、IB、I称为电流三角形,它和导纳三角形相似。即RLC并联电路同样会出现分电流大于总电流的现象IBC1/L,B0,y0,电路为感性,电流落后电压;2222)(CLGBGIIIIIIUGI.LI.IyCI.等效电路.I.UBI.'j1CRI.R+-C=1/L,B=0,y=0,电路为电阻性,电流与电压同相UIIG.CI.等效电路.IjL’.UBI.RI.R+-LI.等效电路.I.URI.R+-⑤复阻抗和复导纳的等效互换||jzφZXRZ一般情况G1/RB1/X。若Z为感性,X0,则B0,即仍为感性。yφYBGY||jBGXRXRXRZYjjj11222222,XRXBXRRGzyφφZY,||1||注GjBYZRjX同样,若由Y变为Z,则有:yzzyφφZYBGBXBGGRXRBGBGBGYZφZXRZφYBGY,||1||,jjj11||j,||j222222GjBYZRjX例RL串联电路如图,求在=106rad/s时的等效并联电路。解RL串联电路的阻抗为:02.501.786050jjXRZL601006.01036LXL0.06mH50L’R’SjZY0098.00082.02.500128.02.501.7811001220082.011''GRmHL102.00098.01'6.阻抗(导纳)的串联和并联ZIZZZIUUUUnn)(2121Z+-UIUZZUii分压公式nknkkkkjXRZZ11)(Z1+Z2Zn-UI①阻抗的串联nknkkkkjBGYY11)(分流公式IYYIii②导纳的并联Y1+Y2Yn-UIY+-UIYUYYYUIIIInn)(2121两个阻抗Z1、Z2的并联等效阻抗为:2121ZZZZZ例求图示电路的等效阻抗,=105rad/s。解感抗和容抗为:100130100)100100(10030)(221jjjjXRjXjXRjXRZCLCL1001011035LXL100101.0101165CXC1mH301000.1FR1R2例图示电路对外呈现感性还是容性?。解1等效阻抗为:75.45.5481.532563)43(5)43(5630jjjjjjZ33-j6j45解2用相量图求解,取电流2为参考相量:U33-j6j452I1II2U1U+++---2II2U1UU例图示为RC选频网络,试求u1和u0同相位的条件及?01UU-jXC-R-++Ruou1-jXC解设:Z1=R-jXC,Z2=R//jXC2121ZZZUUo2122111ZZZZZUUo实数CCCCCCCCCCRXXRjjRXRXjXRjRXjXRjXRjRXjXRZZ222222122)()(CXR3211oUU7.电阻电路与正弦电流电路的分析比较GuiRiuui:0:KVL0:KCL:或元件约束关系电阻电路:0:KVL0:KCL:UYIIZUUI或元件约束关系正弦电路相量分析可见,二者依据的电路定律是相似的。只要作出正弦电流电路的相量模型,便可将电阻电路的分析方法推广应用于正弦稳态的相量分析中。结论1.引入相量法,把求正弦稳态电路微分方程的特解问题转化为求解复数代数方程问题。2.引入电路的相量模型,不必列写时域微分方程,而直接列写相量形式的代数方程。3.引入阻抗以后,可将所有网络定理和方法都应用于交流,直流(f=0)是一个特例。例1:R2+_Li1i2i3R1CuZ1Z2UR2+_R11I2I3ICj1Lj画出电路的相量模型13.28911.923.7245.3037.175.1049901047.31847.3181000)47.318(10001)1(3111jjjCjRCjRZ,/314,100,10,500,10,100021sradVUFCmHLRR求:各支路电流。已知:解1571022jLjRZ3.5299.16613.13211.1021571013.28911.9221jjjZZZAZUI3.526.03.5299.16601001AjICjRCjI20181.03.526.07.175.104947.31811112AICjRRI7057.03.526.07.175.1049100011113Z1Z2UR2+_R11I2I3ICj1Lj列写电路的回路电流方程和节点电压方程例2.解+_susiLR1R2R3R4CSI+_R1R2R3R4Ljcj1SU1I2I4I3I回路法:SUIRILjRILjRR3221121)()(0)()(33112431IRILjRILjRRR01)1(42312332ICjIRIRICjRRSII41nU2nU3nU节点法:SnUU1011)111(33122321nnnURURURRLjRSnnnIUCjURUCjRR1233431)11(SI+_R1R2R3R4Ljcj1SU.45,3030j,A904321oSIZZZZI求:已知:ΩΩΩ方法一:电源变换15153030)30(30//31jjjZZ解例3.Z2SIZ1ZZ3IS31)//(IZZZ2Z1Z3ZI+-ZZZZZZII23131S//)//(45301515)1515(4jjjjoo36.9-5455.657Ao9.8113.1方法二:戴维南等效变换V4586.84)//(o310ZZIUSZeqZ0UI+-Z2SIZ1Z30U求开路电压:求等效电阻:Ω45j15//231ZZZZeqA9.8113.14545154586.84o00jZZUI例4求图示电路的戴维南等效电路。6030030060300601002000111jUIIIUoj300+_00600U+_14I1I5050j300+_00600U+_1200I1I100+_解045230160jUo求短路电流:SCI006.010060SCI000452506.045230SCeqIUZ例5用叠加定理计算电流2IZ2SIZ1Z32ISU+-解:)()1(SS短路单独作用UI323S'2ZZZIIoooo30503050305004A3031.23503