找次品探索乐园—找次品实验小学刘春芳平衡次品不平衡次品3瓶当中有1瓶次品,用天平称称,至少1次就可以保证找到。如果不是3瓶,而是我们实验小学的全体师生每人1瓶,大概有两千多瓶吧。我们暂且估计有2187瓶。如果2187瓶中也有1瓶次品(轻),用天平称称,至少几次才能保证找到呢?请你猜一猜!在9瓶里有1个是次品(次品轻一些),用天平称,至少称几次就一定能找出次品来?(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?称一次可以后最少淘汰多少个?(3)假如天平不平衡,次品又在哪里?称一次可以后最少淘汰多少个?(4)至少称几次就一定能找出次品?零件个数分成的份数保证能找出次品需要称的次数称一次后最少淘汰的个数9999九份1,1,1,1,1,1,1,1,14五份(2,2,2,2,1)3三份(4,4,1)3三份(3,3,3)224569→(1、1、1、1、1、1、1、1、1)〓4次9→(4、4、1)→(2、2)→(1、1)〓3次9→(2、2、2、2、1)→(2、2、2、2、1)→(1、1)〓3次9→(3、3、3)→(1、1、1)〓2次请仔细观察上面的四种称法,看谁能最快发现其中的奥秘?平均分成3份称,需要称的次数最少。如果不能平均分成3份呢?比如8个分成三份怎么分?零件个数分成的份数保证能找出次品需要称的次数称一次后最少淘汰的个数8888八份1,1,1,1,1,1,1,14四份(2,2,2,2)3两份(4,4)3三份(3,3,2)224453的倍数不是3的倍数分成三份平均分相差1找次品,方法多;3而均,最合适;无法均,相差1;请牢记,找得易。(只有一个次品)谈谈这节课你有什么收获?有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?15(5,5,5)平不平553次做一做:有10瓶水,其中9瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?3次10(3,3,4)平平不平4(2,2)不平2(1,1)2(1,1)3