原边反馈电源方案的设计原边反馈(PSR)的AC/DC控制技术是最近10年间发展起来的新型AC/DC控制技术,与传统的副边反馈的光耦加431的结构相比,其最大的优势在于省去了这两个芯片以及与之配合工作的一组元器件,这样就节省了系统板上的空间,降低了成本并且提高了系统的可靠性。在手机充电器等成本压力较大的市场,以及LED驱动等对体积要求很高的市场具有广阔的应用前景。在省去了这些元器件之后,为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、变压器容差补偿、线缆补偿和EMI优化技术。初级调节的原理是通过精确采样辅助绕组(NAUX)的电压变化来检测负载变化的信息。当控制器将MOS管打开时,变压器初级绕组电流ip从0线性上升到ipeak,公式为。此时能量存储在初级绕组中,当控制器将MOS管关断后,能量通过变压器传递到次级绕组,并经过整流滤波送到输出端VO。在此期间,输出电压VO和二极管的正向电压VF被反射到辅助绕组NAUX,辅助绕组NAUX上的电压在去磁开始时刻可由公式表示,其中VF是输出整流二极管的正向导通压降,在去磁结束时刻可由公式表示,由此可知,在去磁结束时间点,次级绕组输出电压与辅助绕组具有线性关系,只要采样此点的辅助绕组的电压,并形成由精确参考电压箝位的误差放大器的环路反馈,就可以稳定输出电压VO。这时的输出电流IO由公式表示,其中VCS是CS脚上的电压,其他参数意义如图1所示。这是恒压(CV)模式的工作原理。图1原边控制应用框图及主要节点波形图。当负载电流超过电流极限时,负载电流会被箝位在极限电流值,此时系统就进入恒流(CC)模式,这里对IO的公式需要加一个限定条件即,即去磁时间与开关周期的比例保持一个常数,这样在CC模式下的输出电流公式变成了,其中C1是一个小于0.5的常数,VCSLMT是CS引脚限压极限值。在使得去磁时间与开关周期的比例保持一个常数后,输出的电压和电流就都与变压器的电感值无关了,因此在实用层面上降低了应用方案对同批次电感感值一致性的要求,从而降低了大规模生产加工的成本。与此同时,原边反馈系统还会面临线缆压降的问题。因为系统不是直接采样输出端(次级绕组整流后)的电压,而是通过采样辅助绕组的去磁结束点的电压来控制环路反馈的,因此,当输出线较长或者线径较细时,在负载线上会存在较大的内阻(例如在充电器方案中)。在负载电流变化较大的情况下,输出线的末端电压也会有较大变化。在CV模式下,这种变化在某些场合是不能接受的,因此,原边反馈驱动芯片还应该提供对线缆压降补偿的功能,这个功能通常是通过在INV脚上拉一个小电流来实现的。通过预估补偿值来调节连接在INV脚上的分压电阻的总阻值(分压比例不变),从而补偿不同负载线型和负载大小带来的线缆压降,以维持CV曲线的水平性(如图2中的CV曲线)。图2原边反馈AC-DC控制器的工作模式示意图。此外,一款好的原边反馈AC-DC控制器还应该具备优秀的EMI特性,对于传导和辐射这两方面的干扰都应该尽可能降低,目前常见的做法是采用抖频技术和驱动信号柔化技术。抖频技术是指在开关频率的基频基础上引入一个小幅度的频率变化值,以此来降低在开关频率点上的频谱能量强度,优化EMI特性。而驱动信号柔化技术则是指将驱动MOS管栅极的驱动信号的开启沿(上升沿)变得比较平滑,以减小MOS管开启瞬间的能量传导和辐射,从而进一步优化EMI特性。现在大部分芯片都是直接取样辅助线圈上电压,由于漏感的原因,在MOS关断后,也就是次级二极管导通瞬间,会产生一个尖峰,影响电压采样,为了避开个这个尖峰,大部分厂家都是采用延时采机,也就是在MOS管关断一段时间后再来采样线圈电压。从而避开漏感尖峰。PI是在高压开关关断2.5μs采样。这种采样方式其实在以前很多芯片上的过压保护上也都有应用,比如OB2203和UCC28600,NCP1377上都有这样的应用,所以可以得到较高精度的过压保护。还有些厂家是在下取样电阻上并一个小容量的电容来实现。同时建义大家吸收电路使用恢复时间约只有2us的IN4007再串一个百欧左右的电阻作吸收。可以减小漏感产生的振铃,从而减小取样误差。得到较高采样精度。次级圈数固定,辅助绕组固定,取样精度高。比较器内部精度也高,自然可以得到较高的输出电压精度。先写个变压器的基本公式。Np*Ipk=Ns*Ipks(变压器次级只有一个绕组Ns),Np,Ipk,Ns,Ipks分别是初级圈数,初级峰值电流,次级圈数,次级峰值电流当工作在DCM模式时,输出电流是次级电流(如图的三角形)在一个工作周期的平均值,所以Io=(Td/T)*Ipsk/2,其中T为工作周期。Np*Ipk=Ns*Ipks所以Ipks=Np*Ipk/Ns,将Ipks=Np*Ipk/Ns代入Io=(Td/T)*Ipsk/2,得到Io=(Td/T)*(Np*Ipk/Ns)/2。可以看出Np,Ns为常数,只要固定Ipk,和Td/T就可以得到固定的电流输出。市面上很多IC固定Ipk的方式是限制初级MOS取样电阻上的峰值电压,同时为了避免寄生电容在导通时产生的电流尖峰,会加入一段消隐时间。Td/T是由IC内部固定的。OB的是0.5(他是给出TD同频率的关系),BYD的1508是直接给来的0.42。仙童的没有直接给出1317没直接给出这个值,而是给出了一个计算初级电流的公式。也是间接告诉了Td/T。CC时,在不同输出电压情况下,工作在PFM模式以保证固定的Td/T而实现稳定的输出电流。这就是实现恒流的基本原理,输出电压变化时能保证电流不变。只要保证ICTd/T的精度,以及初级峰值电流的限流精度就可以得到较高的输出电流精度。这两部分基本上取决于IC。取样电阻保证1%是没有问题的。再讲讲PSR对电感量补偿的原理。看过PILN60X实验视频的朋友可以看到他们的PSR对电感量有补偿。当电感量低出设计正常值时,达到同样的峰值电流需要的时间就短了,Δt=L*ΔI/V,ΔI在DCM模式时等于峰值电流,而峰值电流是固定的。V就是Vin,为常数。所以L低会造成Δt下降,也就是Ton下降。根据伏秒平衡,Ton*Ipk*Np=Td*Ipks*Ns。Np,Ns为常数,Ton的下降同样也造成Td下降。由于Td比上周期T为固定值,Td下降造成T变小,所以频率就升高了。但是由于有最高频率的限制。所以设计时要注意在最重负载时,频率不能工作在最高频率,这样电感量的变化将得不到补偿。应适当低于最高工作频率。电感量高出正常值时,结果当然是相反的。Io=(Td/T)*(Np*Ipk/Ns)/2。只要Ipk,Td/T不变,输出电流也就不变。所以电感量变化引起的是频率的变化。从公式P=1/2*I*I*L*f也可以看出。I固定,输出功率不变,L的变化引起的是频率f的变化。但一定要注意最高工作频率限制。电源参数(7*1WLED驱动):输入AC90-264V输出:25.8V0.3A方案采用芯联半导体的CL1100(见附件)从IC资料上可以看出Td/T=0.5CS脚限制电压Vth_oc为0.91VFB基准为2V占空比D取0.45Vin取90V整流管VF取0.9最高开关频率取50KHZ变压器用EE16,AE=19.3mm^2VCC供电绕组电压取22V(考虑到不同串数LED的兼容性VCC绕组电压取得较高,但通常根据经验,取芯片最大值减去2v)1,计算次级峰值电流Ipks:Io=(Td/T)*Ipsk/2Ipks=Io*2/(Td/T)=0.3*2/0.5=1.2A2,计算反射电压Vor:根据伏秒平衡Vin*Ton=Vor*TdVin*Ton/T=Vor*Td/TVin*D=Vor*Td/T90*0.45=Vor*0.5Vor=81V3,计算匝比N,Vor=(Vo+Vf)*NN=81/(25.8+0.9)=3.034,计算初级峰值电流(考虑到初级电流一部分在转换时的损耗,如吸收中的一部分损耗,磁芯损耗,输出电容损耗,次级铜损)初级电流损耗取输出电流的7%Ipk=Ipks*(1+7%)/N=1.2*(1+7%)/3.03=0.4245,计算初级电感量Vin/L=ΔI/ΔtDCM模式时ΔI等于Ipkvin/L=Ipk/(D/f)L=vin*D/f/Ipk=90*0.45/50K/0.424=1.91mH6,计算初级圈数Np,Ns(B取0.3mT)NP=L*I/(AE*B)=1.91*0.424/(19.3*0.3)*10^3=140TSNS=NP/N=140/3=46.6TS取47TS时反算47*3.03=142TSNA=NS*VA/(Vo+VF)=47*22/(25.8+0.9)=39TS7,电压取样电阻当供电绕组电压取22V时,FB基准为2V,上下取样电阻正好为10比1,取6.8K和68K8,电流检测电阻RcsRcs=Vth_oc/Ipk=0.91/0.424=2.15用2.7并11欧电阻9,二极管反压=Vin_max/N+Vo=264*1.41/3.03+25.8=149V取耐压200V的SF1410,MOS耐压及漏感尖峰取Vlk75V=Vin_max+Vor+Vlk=373+81+75=529V考虑到功耗选用2N60.