飞行原理知识要点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章飞机和大气的一般介绍1、机翼的剖面参数:翼弦:翼型前沿到后沿的连线。厚度:上翼面到下翼面的距离;最大厚度;最大厚度位置:最大厚度到翼型前沿的距离与弦长的比值,用百分比表示;相对厚度:(厚弦比)翼型最大厚度与弦长的比值,用百分比表示。中弧线:与翼型上下表面相切的一系列元的圆心的连线(中弧线到上下翼面的距离相等),对称翼面中弧线与翼弦重合。弧高:中弧线与翼弦的垂直距离;相对弯度:最大弧高与翼弦的比值,用百分比表示。2、机翼的平面形状参数:平直机翼有极好的低速特性,便于制造;椭圆形机翼的阻力最小,但是难以制造,成本高;梯形机翼结合律矩形机翼和椭圆机翼的优缺点,具有适中的升阻特性和较好的低速性能,制造成本也较低;后掠翼和三角翼有很好的高速性能,主要用于高亚音速飞机和超音速飞机,低速性能较差翼展:机翼翼尖之间的距离;展弦比:机翼翼展与平均弦长的比值(表示机翼平面形状长短和宽窄的程度);梢根比:机翼翼尖弦长玉机翼翼根弦长的比值(表示翼尖道翼根的收缩度);后掠角:机翼1/4弦线玉机身纵轴垂直线之间的夹角(表示机翼的平面形状向后倾斜的程度)第二节大气的一般介绍空气密度减小对飞行的影响:真空速不断增大、发动机效率降低空气压力降低的线性变化规律:高度上升8.25(27ft)米气压降低1hPa;高度上升1000ft气压降低1inHg;高度上升11米气压降低1mmHg空气温度降低的线性变化规律:高度上升1000米温度下降6.5°高度上升1000ft温度降低2°湿度越大,空气的密度越小(水蒸气是干空气重量的62%);相对湿度,露点(反映空气中水汽含量的多少,假如空气中水汽含量多,温度降低很少—相对较高的温度就可以达到饱和,露点就高),气温露点差:就是实际气温与露点的差值,反映空气的潮湿程度中低空高度每升高1000米真空速比表速约大5%;气温升高5°速度增大1%第二章低速空气动力学第一节低速空气动力学基础1、飞机的相对气流:相对于飞机运动的空气流,方向与飞行速度方向相反。2、迎角:相对气流方向与翼弦之间的夹角,用α表示。相对气流指向翼弦下方为正迎角,相对气流指向翼弦上方为负迎角,相对气流方向与翼弦平行为零迎角。判断迎角大小的方法3、连续性定理:空气稳定连续地在一流管中流动时,流管收缩,流速增大;流管扩张,流速减慢,即流速大小与流管截面积成反比。4、伯努利定理:稳定气流中,在同一流管的任意截面上空气的动压和静压之和保持不变。流速大动压大则静压小;流速小动压大则静压小;流速为零时静压与总压相等。第二节升力和升力特性1、升力的概念:相对气流流过飞机,就会产生作用于飞机的空气动力,飞机各部分所产生的空气动力的总和叫做飞机的总空气动力(由于相对气流下洗,总空气动力的方向一般是向上并向后倾斜的)根据其所起的作用进行分解:垂直于飞行速度方向的分力叫升力,用于克服重力支托飞机在空中飞行;平行于飞行速度方向向后的分力叫阻力。2、升力的产生原理:空气流到机翼前缘,分成上下两股分别沿机翼上下表面流过,机翼上表面由于正迎角和翼面外凸的影响,流管受挤压收缩,气流流速增大,压力降低;机翼下表面气流受阻,流管扩张,流速减慢,压力增大。机翼上下表面出现压力差,在垂直于相对气流方向上的总压力差就是机翼的升力。然后气流在机翼的后缘回合向后流去。3、压力沿翼弦方向的分布:矢量表示法---利用箭头的长短和方向表示;坐标表示法---沿翼弦方向压力系数的分布情况:机翼升力的产生主要是靠机翼上表面吸力的作用(60%~80%),尤其是上翼面前段,而不是靠下翼面正压力的作用(20%~40)4、升力公式:L=CL∙12ρv2∙S,由公式分析升力的影响因素:CL飞机的升力系数,综合表达机翼形状(剖面形状)、迎角对飞机升力的影响。1/2pv2,动气运动动压,升力与动压成正比。S机翼面积,机翼在速度所在平面内投影面积,升力与面积成正比。----产生相同的升力,升力系数越大,所需的速度越小,则所需的跑道越短,起飞和着陆越安全。5、升力特性:指飞机的升力系数的变化。----升力系数曲线,升力系数随迎角的变化规律曲线(在中小迎角范围内,升力系数随迎角的增大呈线性增大;较大迎角范围内,迎角增大升力系数增大的趋势减缓;迎角达到临界迎角,升力系数达到最大;超过临界迎角,迎角增大升力系数降低)6、升力特性参数:零升迎角,升力等于0时而迎角;升力曲线斜率:升力增量与迎角增量的比值(小于临界迎角,斜率大于零,中小迎角时大,大迎角范围内逐渐减小;临界迎角时等于0;大于临界迎角时,斜率小于零);临界迎角:升力系数曲线最高点对应的迎角;最大升力系数:升力系数曲线最高点对应的升力系数。第二节附面层相关知识1、附面层的形成:由于物体表面不是绝对光滑的,且对空气分子有吸附作用,紧贴物体表面的一层气流受阻滞和吸附,气流相对物面的速度为零,又因为空气的粘性,影响其外层的气流速度减小,这样一层层的影响下去,就出现了气流速度沿物体表面法线方向逐渐增大的薄层----附面层(紧贴物体表面气流速度从物面速度为零处逐渐增大到99%主流速度的很薄的空气流动层)2、附面层的特点:附面层内沿物面法线方向压强不变且等于法线主流压强;附面层的厚度随气流流经物面距离的增长而增厚(厚度:物面沿法向到附面层边界的距离)---因为紧贴附面层的空气不断受到附面层内空气粘性的影响逐渐减速变为附面层内的气流。3、附面层的类型:层流附面层,气体微团沿法向分层流动互不混淆没有明显的上下乱动现象;紊流附面层:气体微团沿物面流动,同时沿法向上下乱动,各层强烈混合的现象。层流和紊流之间的过渡区称为转捩点。转捩的内因是层流本身的不稳定;外因是物面的扰动作用4、压强梯度:主流沿流动方向压强变化即存在压强梯度。顺压梯度:沿流动方向,气流后部的压强大于前部压强;逆压梯度:沿流动方向,气流后部的压强小于前部压强;5、附面层的分离:附面层内气流发生倒流,脱离物体表面,形成大量旋涡的现象。分离点:气流开始脱离物体表面的点。分离内因是空气粘性;外因是物面弯曲出现的逆压梯度。顺压梯度段:在顺压使气流加速的作用大于粘性使空气减速的作用,气流加速流动;逆压梯度段,气流在逆压和空气粘性的双重作用下减速,流速减慢压强增大逆压梯度更强,底层气流在逆压梯度作用下发生倒流,倒流而上的气流与顺流而下的气流相遇后,使附面层气流拱起脱离物体表面,被主流卷走形成旋涡,产生气流分离。第三节阻力和阻力特性1、摩擦阻力:飞机飞行中带动空气流动,空气对其则有发作用力,这个反作用力即为摩擦力。影响因素,附面层类型(紊流层的摩擦力越大);空气与飞机的接触面积(越大越大);飞机表面状况(越粗糙越大)2、压差阻力:由于物体前后的压力差而产生的阻力。气流在机翼后缘产生气流分离,附面层分离后,涡流区的压强相对于机翼前压强降低。3、干扰阻力:以机身和机翼结合部为例,其他地方同样的道理。本来气流沿机身流过,但是在安装机翼位置外凸,气流受干扰流管收缩流速加快压强降低;流过结合部飞机表面又向内弯曲流管扩张流速减慢压强增加;结合部逆压梯度增大气流分离前移涡流区扩大,产生了额外的阻力。4、诱导阻力:由于气流下洗,垂直于下洗流的实际升力向后倾斜,该力在垂直与速度方向的分力起着升力的作用;平行于速度方向的分力向后阻碍飞机前进即为诱导阻力。影响因素,机翼形状(平面形状)--椭圆翼的诱导阻力最小;展弦比---越大减弱翼尖涡减小气流下洗从而减小诱导阻力;升力越大分力越大诱导阻力越大;与飞行速度-的平方成反比。1)翼尖涡的形成:上翼面压强低下翼面压强高,气流从下翼面(翼根向翼尖倾斜)绕过翼尖流向上翼面(翼尖向翼根倾斜),流到机翼后缘汇合,由于流向不同而形成旋涡并向后流去----形成翼尖涡(左翼尖顺时针右翼尖逆时针)2)旋涡在机翼剖面会诱起垂直于相对气流方向向下的诱导速度(下洗速度)--气流下洗改变了翼型的气流方向,使流过翼型的气流向下倾斜,这个向下倾斜的气流称为下洗流。下洗流与相对气流之间的夹角称为下洗角。翼弦与下洗流之间的夹角为有效迎角。5、总阻力:总阻力包括废阻力(摩擦阻力、压差阻力、诱导阻力)和诱导阻力。废阻力曲线;诱导阻力曲线;总阻力曲线6、阻力特性:主要指阻力系数的变化特性,阻力系数表示飞机的迎角,机翼形状和机翼表面质量对飞机阻力的影响。阻力系数曲线:阻力系数随迎角的增大而增大(中小迎角时飞机的阻力主要是摩擦阻力迎角对其影响小阻力系数增加缓慢;较大迎角时飞机的阻力主要是压差阻力和诱导阻力,迎角对其影响大,迎角增大阻力系数增加较快;接近或超过零剪迎角时涡流区扩大压差阻力急剧增大)第四节升阻比特性1、升阻比:相同迎角下,升力系数与阻力系数的比值。与空气密度、飞行速度、机翼面积的大小无关,只与迎角的变化有关。2、升阻比曲线:升阻比随迎角变化的规律,升阻比存在一个最大值,对应的迎角为最小阻力迎角(有利迎角)3、性质角:飞机总空气动力与升力之间的夹角。性质角越小总空气动力向后倾斜越少升阻比越大。4、极曲线:综合表示飞机的升力系数、阻力系数、升阻比随迎角变化的一条曲线。横坐标为阻力系数,纵坐标为升力系数,曲线上的每一点代表一个与坐标对应的迎角。曲线最高点对应的是临界迎角和最大升力系数;从原点向曲线引切线切点对应最小阻力迎角和最大升阻比。第三章低速空气动力学第一节地面效应:飞机在起飞和着陆贴近地面时,由于流过飞机的气流受地面的影响,使飞机的空气动力和力矩发生变化,这种效应称为地面效应。升力系数增大,升力增大。贴近地面,流经机翼下表面的气流受到地面阻滞,流速减慢,压强增大(气垫现象);而且由于地面阻滞原来从下翼面流过的气流改道从上翼面流过,上翼面前段的气流加速,压强降低,上下翼面的压强差增大,升力系数增大由于地面作用,气流下洗减弱,下洗角减小,诱导阻力减小,飞机阻力系数减小。下洗角减小水平尾翼的负迎角减小,负升力减小,飞机下俯力矩增大实现表明,飞机距地面在一个翼展高度范围内,地面效应对飞机有影响,距地面越近地面效应越强。-飞机进出地面效应区时的反应特征?第二节增升装置的增升原理增升装置:用来增大最大升力系数的装置。前缘缝翼:位于机翼前缘,打开一条缝隙下翼面的高压气流从缝隙穿过贴近上翼面流动,补充上翼面气流动能降低逆压梯度延缓机翼气流分离,增大升力系数和临界迎角;但是减小了上下翼面的压强差同时也会减小升力系数。所以在小速度大迎角上翼面气流分离严重时打开前缘缝翼起到增大升力系数作用。迎角较小时气流分离很弱打开反而会降低升力系数。后缘襟翼:分裂襟翼(从机翼后段下表面向下偏转而分裂出的翼面,在机翼个襟翼的楔形区域形成涡流压强降低吸引上翼面气流使其流速加快,上下翼面压力差增大即增大了升力系数,同时延缓气流分离;放下襟翼使机翼弯度增大使上下翼面的压强差增大升力系数增大,但是同时使得上翼面最低压强点压强更低气流分离提前临界迎角减小)---可增大75%~85%;简单襟翼(增加机翼弯度,上下翼面的压差增大升力系数增大---同时诱导阻力增大,后缘涡流区扩大压差阻力也增大,总的阻力增大百分比大于升力增大百分比,所以升力系数和阻力系数均增大但是升阻比降低;还会导致临界迎角降低);开缝襟翼(简单襟翼的基础上开缝,下翼面高压气流通过缝隙流到上翼面后缘,上翼面后缘气流动能增加流速加快,延缓气流分离提高升力系数;弯度增大,上下压力差增大升力系数增大,而且临界迎角降低不多)--可增大85%~95%;后退襟翼(下偏的同时向后滑动,增大机翼弯度,同时还增大了机翼面积,增升效果好且临界迎角降低较少);后退开缝襟翼(结合了开缝襟翼和后退襟翼的增升效果)---两种形式:查格襟翼(后退较少,面积增加少,可增大110%~115%);富勒襟翼(后退量和机翼面积增加量较多,可增大110%~140%)。。起飞时,襟翼偏角小,阻力系数增加少,而升力系数却增加很多,升阻比增大,有利于缩短起飞滑跑距离和优化爬升性能;着陆时,襟翼放下角度大,阻力系数和升力系数都提高较多,有利于缩短着陆滑跑距离。前缘襟翼:大迎角飞行,放下前缘襟翼,可以减小前缘与相对气流之间的夹角,使气流平顺地沿上翼面流动,延缓上表面气流分离;另

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功