失效分析第三章失效分析的基本方法1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制造缺陷分析(4)使用及维护情况分析2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故障树分析及应用3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。②确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹的河流花样(分叉)确定主裂纹。(3)断裂(裂纹)源区的宏观判断①根据不同断裂的特征确定裂纹源区;②将断开的零件的两部分相匹配,则裂缝的最宽处为裂纹源区;③根据断口上的光彩程度确定裂纹源区;④断口分边缘情况,观察断口边缘有无台阶、毛刺、剪切唇和宏观塑性变形等。(4)宏观断口的表象观察与致断原因初判①断裂源区和零件几何结构的关系;②断裂源区与零件最大应力截面位置的关系a.断口表面与最大正应力所在平面相对应,即断口与轴线呈45°螺旋状。此类型断裂位宏观脆性断裂;b.断口表面与最大切应力所在平面相对应,即断口平面与轴线垂直或平行。此类型断裂为宏观韧性断裂;c.断口表面与轴线的夹角远小于45°,即断口既不和最大正应力所在平面相对应,也不和最大切应力所在平面相对应。③裂纹是从一个部位产生还是从几个部位产生的?是从局部部位产生的还是从很大范围产生的?通常情况是,应力数值较小或应力状态较柔时易从一处产生,应力数值较大或应力状态较硬时,易从多处产生;由材料中缺陷及局部应力集中引起的断裂裂纹多从局部产生;存在大尺寸的几何结构缺陷引起的应力集中时裂纹易从大范围产生。④断口表面粗糙度。⑤断口上的冶金缺陷。8.断口围观分析内容主要包括断口产物分析及形貌分析两个方面:①断口的产物分析。②断口的微观形貌分析。(1)解理断裂特点:解理断裂是正应力作用下金属的原子键遭到破坏而产生的一种穿晶断裂。解理初裂纹起源于晶界、亚晶界或相界面,并严格沿着金属的结晶学平面扩展,其断裂单元为一个晶粒尺寸。微观形貌特征及断裂性质及断裂性质:解理断裂的微观形貌特征主要是河流花样及解理台阶,除此之外,尚有舌状花样、鱼骨状花样、扇形花样及羽毛花样等以及珠光体解理。致断原因分析:①从材料方面考虑,通常只有冷脆金属才能发生解理断裂。②构件的工作温度较低,即处在脆性转折温度以下。③只有在平面应变状态(即三向拉应力状态)下才能发生解理断裂,或者说构件的几何尺寸属于厚板情况。④晶粒尺寸粗大。⑤宏观的裂纹存在。(2)准解理断裂特点:准解理型断裂是淬火加低温回火的高强度钢较为常见的一种断裂形式,常发生在脆性转变温度附近。准解理断了的断口是有平坦的“类解理”小平面、微孔及撕裂棱组成的混合断裂。判别:①在微观范围内,可以看到“解理”断裂和微孔型断裂的混杂现象,即在微孔断裂区内有平坦的小刻面的周围有塑性变形形成撕裂棱的形貌特征。②小刻面的几何尺寸与原奥氏体晶粒的大小基本相当,即断裂单元为一个晶粒大小。③小刻面上的河流花样比解理断裂所看到的要短,且大都源于晶内而中止于晶内。④小刻面上的台阶直接汇合于邻近的由微孔组成的撕裂棱上。(3)准脆性解理断裂特点:光滑试件的解理断裂,其宏观表现上一般是脆性的。但对于裂缝试件来说,常常碰到这种情况,在断口的微观分析时,观察到的断裂性质是解理的,但是在宏观断口分析上却可以看到剪切唇。此种解理断裂是在断裂应力大于材料屈服极限的条件下产生的。从工程的意义上说,因其宏观变形量不大,也是宏观脆性的解理断裂。这种断裂称为准脆性解理断裂。判别:①微观形貌分析时,观察到解理型断裂和微孔型断裂的混合现象;②但与准解理型的混合型断裂不同之处在于,在构件中部平面应变区为解理型断裂,在构件的周边平面应力区位微孔型断裂。由此可以确定是否为准脆性解理断裂。(4)微孔型断裂:又叫微孔聚集型断裂,它是指塑性变形起主导作用的一种延性断裂。微观形貌:微观电子形貌呈孔坑、塑坑、韧窝、叠波花样。在孔坑的内部通常可以看到第二相质点或其脱落后留下的痕迹,这是区别断裂的主要微观特征。判别:按其加载方式,微孔断裂可分为等轴型、撕裂型及滑开型三种形式,微孔断裂可以是沿晶型的,但多为穿晶型的断裂。微孔型断裂时一种延性断裂,但不能与宏观延性断裂等同起来。微孔型断裂的宏观表现有两种类型:一是宏观塑性的微孔型断裂;另一种是高强度材料裂纹试件在室温拉伸时出现的宏观脆性的微孔型断裂。宏观脆性微孔型断裂的特点:其微观电子形貌为细小、均匀分布的等轴型微孔,微孔的形成和连接时的塑性变形量很小。这种断裂的特点是由高强度材料的组织特点决定的。高强度材料的组织特点是在固溶强化的基体上弥散分布着细小的第二相质点,质点的平均间距很小。这种组织对于裂纹的敏感性是非常大的。也就是说,裂纹顶端的应力集中现象很严重。因此。断裂的名义应力低于材料的屈服极限,而其微观机制确是微孔聚集型的,由于微孔的形成和扩大连接所发生的变形量很小,所以在宏观上表现为典型的脆性断裂特征。(5)沿晶断裂微观形貌特征:金属零件在应力作用下沿晶粒边界发生分离的现象称为沿晶断裂。按断口的微观形貌特征,沿晶断裂又可以分为两大类:一是沿晶的正向断裂,这类断裂断口的微观形貌反应了多面体晶粒的界面外形,成典型的冰糖块状,晶粒表面完整、干净、无塑性变形痕迹;另一类是沿晶的延性断裂,这类断裂断口的微观电子图像上可见大量的沿晶界分布的细小微孔及第二相质点。判定:断口表面呈冰糖块状或岩石状的多面体外形,有较强的立体感。致断原因:①沿晶正向断裂:微观电子形貌是典型冰糖块状。沿晶的延性断裂:微观电子形貌是晶粒间界的表面上存在有大量的微孔花样(冰糖块状+小质点)。③脆性的第二相质点沿晶界析出引起的沿晶断裂。④晶界与环境介质交互作用引起的沿晶断裂。⑤具有疲劳机制的沿晶断裂。第四章静载荷作用下的断裂失效分析1.过载断裂失效断口三个特征区:纤维区、放射区及剪切唇。2.断口形貌,判断裂纹源在哪个区(人字纹):表面光滑的零件断口上人字纹的尖部总是指向裂纹源的方形,而周边有缺口时正好相反3.载荷性质的影响:①断口中三要素相对大小的变化。②断口形貌的变化。4.扭转和弯曲过载断裂断口特征扭转:韧性断裂的断面与轴向垂直,脆性断裂的断面与轴向呈45°螺旋状,对于刚性不足的零件,扭转时发生明显的扭转变形。弯曲:弯曲断口上可以观察到明显的放射线或人字纹花样。5.回火致脆断裂的特征:宏观:断面结构粗糙,断口呈银白色的结晶状,一般为宏观脆断。但在脆化程度不严重时,断口会出现剪切唇。微观:沿奥氏体晶界分离形成冰糖块状。6.冷脆金属低温脆断的特征:①冷脆金属低温脆断断口的宏观特征典型宏观特征为结晶状,并有明显的镜面反光现象。断口与正应力轴垂直,断口平齐,附近无缩颈现象,无剪切唇。断口中的反光小平面(小刻面)与晶粒尺寸相当。马氏体基高强度材料断口有时呈放射状撕裂棱台阶花样。②冷脆金属低温脆断断口的微观特征冷脆金属低温脆断断口的微观形貌具有典型的解理断裂特征:河流花样、台阶、舌状花样、鱼骨花样、羽毛状花样、扇状花样等。对于一般工程结构用钢,通常所说的解理断裂,主要是在冷脆状态下产生的。7.第二相指点致脆断裂:指由第二相质点晶粒间界析出引起晶界的脆化或弱化而导致的一种沿晶断裂。失效的两种情况:一是脆性第二相质点沿原奥氏体晶界择优析出引起的晶界脆化。二是某些杂质元素沿晶界富集引起的晶界弱化。断口特征:宏观断口均为脆性晶粒状;微观形貌为沿晶断裂,因晶界上有条状析出物而导致脆性断裂。8.环境致脆断裂失效分析:腐蚀开裂、氢致开裂、腐蚀疲劳、热疲劳及低熔点金属致脆断裂等。应力腐蚀开裂的断口及裂纹特征:①断口宏观形态一般为脆性断裂,断口界面基本上垂直于拉应力方向。断口上有断裂源区、裂纹扩展区和最后断裂区;②应力腐蚀裂纹源于表面,并呈不连续状,裂纹具有分叉较多,尾部较尖锐(呈树枝状)的特征;③裂纹的走向可以使穿晶的也可以是沿晶的。材料的晶体结构是影响应力腐蚀裂纹走向的主要因素。面心立方金属的材料易引起穿晶型应力腐蚀,而体心立方金属的材料则以沿晶型开裂为主;④应力腐蚀断口的微观形貌可位岩石状,岩石表面有腐蚀痕迹。氢致脆段断口形貌特征:①宏观断口齐平,为脆性的结晶状,表面洁净呈亮灰色;实际构件的氢脆断裂又往往与机械断裂同时出现,因此,断口上常常包括这两种断裂的特征,对于延迟断裂断口,通常有两个区域,一是氢脆裂纹的亚临界扩展区(齐平部分);二是机械撕裂区(斜面,粗糙,有反射线花样)。②微观断口沿晶分离,晶粒轮廓鲜明,晶界有时可见到变形线(呈发纹或鸡爪痕花样);应力较大时也可能出现微孔型的穿晶断裂。③显微裂纹呈断续而弯曲的锯齿状。④在应力集中较大的部分起裂时,微裂纹源于表面或靠近缺口底部。应力集中比较小时,微裂纹多源于次表面或远离缺口底部(渗碳等表面硬化件出现的氢脆多源于次表面)。⑤对于在高温下氢与钢中碳形成CH4气泡导致的脆性断裂,其断口表面具有氧化色及晶粒状。微观断口可见晶界明显加宽及沿晶型的断裂特征,裂纹附近珠光体有脱碳现象。⑥氢化物致脆断裂,也属于沿晶型的。低熔点金属的接触致脆断裂失效:条件①金属零件与低熔点金属长时间接触。②存在拉应力和较高的温度条件。③基体金属与低熔点金属存在一定的环境体系。低熔点金属与零件材料的浸润性越好,越易构成致脆断裂的环境系统。如二者的浸润性不好,即使零件表面存在裂纹,因裂纹的扩展速度始终超过低熔点金属的渗入速度,所以也不能构成致脆断裂。④加载速度。只有在低加载速度条件下才能