1.6-三角函数模型的简单应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.6三角函数模型的简单应用问题提出1.函数中的参数对图象有什么影响?三角函数的性质包括哪些基本内容?sin()yAx,,A2.我们已经学习了三角函数的概念、图象与性质,其中周期性是三角函数的一个显著性质.在现实生活中,如果某种变化着的现象具有周期性,那么它就可以借助三角函数来描述,并利用三角函数的图象和性质解决相应的实际问题.例1如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式.61014yT/℃xt/h102030O探究一:根据图象建立三角函数关系思考1:这一天6~14时的最大温差是多少?如图,某地一天从6~14时的温度变化曲线近似满足函数:sin()yAxb思考2:函数式中A、b的值分别是多少?30°-10°=20°A=10,b=20T/℃102030ot/h61014sin()yAxb思考3:如何确定函数式中和的值?3,84思考4:这段曲线对应的函数是什么?310sin()20,[6,14].84yxx思考5:这一天12时的温度大概是多少(℃)?27.07℃.T/℃102030ot/h61014解:(1)最大温差是20℃(2)从6~14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象61014yT/℃xt/h102030O13010102A13010202b1214628将x=6,y=10代入上式,解得34310sin20,6,1484yxx所求出的函数模型只能近似刻画这天某个时段温度变化,因此应当特别注意自变量的变化范围所以总结:已知函数图像maxmin1A=fx-fx2maxmin1b=fx+fx2利用求得2πT=,ωω利用最低点或最高点在图象上该点的坐标满足函数解析式可求得,φ也可以利用函数的零值点来求.f求函数的方法:(x)=Asin(x+)+b例2画出函数y=|sinx|的图象并观察其周期.xy-11O2222y=|sinx|解周期为π验证:|sin(x+π)|=|-sinx|=|sinx|探究二:根据解析式模型建立图象模型利用函数图象的直观性,通过观察图象而获得对函数性质的认识,这是研究数学问题的常用方法。显然,函数y=|sinx|与正弦函数有紧密的联系,你能利用这种联系说说它的图象的作法吗?正弦函数y=sinx的图象保留x轴上方部分,将x轴下方部分翻折到x轴上方,得到y=|sinx|的图象总结:δφθφ-δ太阳光例3如图,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?课件演示探究三:建立三角函数模型求临界值分析:太阳高度角、楼高h0与此时楼房在地面的投影长h之间的有如下关系:h0=htan23262326040MhCBA根据地理知识,在北京地区,太阳直身北回归线时物体的影子最短,直射南回归线时物体的影子最长.考虑太阳直射南回归线解:取太阳直射南回归线的情况考虑,此时太阳直射纬度为-23°26′,依题意两楼的间距应不小于MC.根据太阳高度角的定义,有,432662234090C000000.24326tantanhhChMC所以即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距例4海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻水深/米时刻水深/米时刻水深/米0:005.09:002.518:005.03:007.512:005.021:002.56:005.015:007.524:005.0探究四:根据相关数据进行三角函数拟合(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米.安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?课件演示问题1:观察上表的数据,你发现了什么规律?问题3:能根据函数模型求整点时的水深吗?问题2:根据数据作出散点图.观察图形,你认为可以用怎样的函数模型刻画其中的规律?从数据列表描点可以得图像为:时刻0.001:002:003:004:005:006:007:008:009:0010:0011:00水深5.0006.2507.1657.5007.1656.2505.0003.7542.8352.5002.8353.754时刻12.0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00水深5.0006.2507.1657.5007.1656.2505.0003.7542.8352.5002.8353.7543691215182124Oxy642xyO3691215182124246解:以时间为横坐标,以水深为纵坐标,在直角坐标系中描出各点,并用平滑的曲线连接。根据图象,可以考虑用函数刻画水深与时间的关系。hxAy)sin(解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图3691215182124Oxy642根据图象,可以考虑用函数y=Asin(x+)+h刻画水深与题意之间的对应关系.A=2.5,h=5,T=12,=0.612,2T得由所以,港口的水深与时间的关系可用近似描述.56sin5.2xy(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?xyO36912151821242465.5y时刻0:001:002:003:004:005:006:007:008:009:0010:0011:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.754时刻12:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.75456sin5.2xy由得到港口在整点时水深的近似值:货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.5.556sin5.2x2.06sinx由计算器可得SHIFTsin-1MODEMODE20.2=0.20135792≈0.2014ABCDy=5.5yOx5101524682.5sin56yx因此有两个交点的图象与直线函数内在区间B,A,5.556sin5.2,0,12yxy2014.06-,2014.06或x6152.5,3848.0BAxx6152.176152.512,3848.123848.012:DCxx由函数的周期性易得因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右.(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时候必须停止卸货,将船驶向较深的水域。xyO36912152462)2(3.05.5xyO246810xy86422.5sin56yx5.50.32yxP(3)设在时刻x货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数,可以看到在6~7时之间两个函数图象有一个交点.通过计算.在6时的水深约为5米,此时货船的安全小深约为4.3米.6.5时的水深约为4.2米,此时货船的安全小深约为4.1米;7时的小深约为3.8米,而货船的安全小深约为4米.因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域.三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥十分重要的作用。具体的,我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行函数拟合而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题。总结:练习例弹簧上挂的小球做上下振动时,小球离开平衡位置的距离s(cm)随时间t(s)的变化曲线是一个三角函数的图象,如图.(1)求这条曲线对应的函数解析式;(2)小球在开始振动时,离开平衡位置的位移是多少?4t/ss/cmO-412p712p

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功