奥数讲座(4年级-综合练习)(12讲)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

四年级奥数讲座综合练习目录第一讲:乘法原理第二讲:加法原理第三讲:排列第四讲:组合第五讲:排列、组合第六讲:排列组合的综合应用第七讲:有趣的数阵第八讲:数学游戏第九讲:简单的幻方及其他数阵图第十讲:数字综合题选讲第十一讲:数字谜第十二讲:数学竞赛试题选讲第一讲:乘法原理基础班1、有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束?2、四角号码字典,用4个数码表示一个汉字。小王自编一个密码本,用3个数码(可取重复数字)表示一个汉字,例如,用011代表汉字车。问:小王的密码本上最多能表示多少个不同的汉字?3、IMO是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的IMO?4、在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。问:共有多少种不同的放法?5、要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?6、甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法?7、如下图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?8、在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?9、一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?10、由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?11、某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?解答1.30种。2.1000个。3.60种。4.400种。提示:第一枚棋子有25种放法,去掉这枚棋子所在的行和列,还有16个空格,所以第二枚棋子有16种放法。5.30种。6.432种。7.1×4×3=12(个).8.90×9=810(个).9.4×4×3×2×1=96(种).10.①8×8×8=512(个);②4×8×8=256(个);③4×7×6=168(个);④1×7×6=42(个);⑤1×3×6=18(个).11.9×10×10×10×10×10=900000(部).提高班1.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?2.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?答案1.48种。2.①8×8×8=512(个);②4×8×8=256(个);③4×7×6=168(个);④1×7×6=42(个);⑤1×3×6=18(个).第二讲:加法原理基础班1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。问:共有多少种不同的订法?3.将10颗相同的珠子分成三份,共有多少种不同的分法?4.在所有的两位数中,两位数码之和是偶数的共有多少个?5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?6.下图中每个小方格的边长都是1。有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?10.在1~1000的自然数中,一共有多少个数字0?11.在1~500的自然数中,不含数字0和1的数有多少个?12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?答案1.38种。2.10种。提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。3.8种。4.45个。提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。5.21个。提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。6.10条。提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。7.3×3+2×4=17(种).8.6+7+15+21+6×7=91(种).提示:拿两本的情况分为2本画报或2本书或一本画报一本书.9.(1)6;(2)10;(3)20;(4)35.10.9+180+3=192(个).11.8+8×8+3×8×8=264(个).12.9+8+7+6+5+4+3+2+1=45(次).我们通常解题,总是要先列出算式,然后求解。可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。这一讲我们介绍利用加法原理在“图上作业”的解题方法。提高班1.用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?11.小明要登15级台阶,每步登1级或2级台阶,共有多少种不同登法?12.小明要登20级台阶,每步登2级或3级台阶,共有多少种不同登法?13.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,答案1.420种。解:如上图所示,按A,B,C,D,E顺序染色。若B,D颜色相同,则有5×4×3×1×3=180(种);若B,D颜色不同,则有5×4×3×2×2=240(种)。共有不同的染色方法180+240=420(种)。2.987种。3.114种。4.274种。提示:取走1根有1种方法,取走2根有2种方法,取走3根有4种方法。将1,2,4作为数列的前三项,从第4项起每项都是它前三项的和,得到1,2,4,7,13,24,44,81,149,274。第10项274就是取走10根火柴的方法数。第三讲:排列基础班1.计算2.某铁路线共有14个车站,这条铁路线共需要多少种不同的车票.3.有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?4.班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?5.由数字1、2、3、4、5、6可以组成多少没有重复数字的①三位数?②个位是5的三位数?③百位是1的五位数?④六位数?解答1.(1)30;(2)2002;(3)156;(4)1.第四讲:组合基础班1.计算:①C315;②C19982000;③C34×C28;④P28-C68.2.从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张作成一道两个一位数的加法题.问:①有多少种不同的和?②有多少个不同的加法算式?3.某班毕业生中有10名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?4.在圆周上有12个点.①过每两个点可以画一条直线,一共可以画出多少条直线?②过每三个点可以画一个三角形,一共可以画出多少个三角形?5.如图,图上一共有六个点,且六个点中任意三个点不共线,问:①从这六个点中任意选两点可以连成一条线段,这些点一共可以连成多少条线段?②从这六个点中任意选两点可以作一条射线,这些点一共可以作成多少条射线?(射线是一端固定,经另一点可以无限延长的.)6.下图中共有4×4=16个小方格,要把A,B,C,D四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?解答1.①455;②1999000;③112;④28.2.①C28=28;②P28=56.3.C28=45.4.①C212=66;②C312=220.5.①C26=15;②P26=30.6.16×9×4×1=576(种)或4!×4!=576(种)提高班1.5件不同的商品陈列在橱窗内,排成一排。(1)如果某件商品不放在中间,有几种不同排法?(2)如果某件商品不能放在两端,有几种不同排法?2.有四封不同的信,随意投入三个信筒里,有多少种不同投法?解答1.(1)5×4×3×2×1-4×3×2×1=96;(2)3×4×3×2×1=72。2.34=81(种)第五讲:排列、组合基础班1.有6名同学参加象棋决赛,得冠军和亚军的名单有几种可能的情况?2.一个口袋装有6个小球,另一个口袋装有5个小球,所有小球的颜色都不相同。(1)从两个口袋中任取一个小球,有多少种不同的取法?(2)从两个口袋中各取一个小球,有多少种不同的取法?3.某市电话号码是五位数,每一数位上的数码可以是0,l,2,…8,9中的任意一个(数字可以重复出现,如00000也算一个电话号码)那么这个城市最多有多少个电话号码?4.在“希望杯”足球赛中,共有27支小足球队参赛。(l)如果这27个队进行单循环赛(两队间只比赛一次,称作一场),需要比赛多少场?(2)如果这27个队进行淘汰赛,最后决出冠军,共需比赛多少场?5.如上图,从A地到B地有两条路;从B地到D地有两条路;从A地到C地只有一条路;从C地到D地有3条路。那么从A地到D地有多少种不同走法?6.5件不同的商品陈列在橱窗内,排成一排。(1)如果某件商品不放在中间,有几种不同排法?(2)如果某件商品不能放在两端,有几种不同排法?7.有四封不同的信,随意投入三个信筒里,有多少种不同投法?8.下图中共有4×4=16个小方格,要把A,B,C,D四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?9.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?答案1.由乘法原理,有6×5种不同情况。2.(1)11;(2)30。3.100000。5.7。6.(1)5×4×3×2×1-4×3×2×1=96;(2)3×4×3×2×1=72。7.34=81(种)8.16×9×4×1=576(种)或4!×4!=576(种)9.①100;②48;③30;④124.提高班1.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.答案1.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功