.)()()(,,论都成立?并证明你的结对一切自然数使等式:是否存在常数例ncbnannnnncba2222121132211代入方程得:解:分别取321,,n)()()(cbacbacba391243433221241232322112212122222210113cba.)()()(都成立对一切自然数猜想:等式nnnnnnn10113121132212222.)()()(都成立对一切自然数猜想:等式nnnnnnn10113121132212222.)(右边,等式成立时,左边证明:411n)()()()()(*101131211322122222kkkkkkNkkn时等式成立,即:假设222221132211))(()(kkkkkn时,左边222110113121))(()()(kkkkkk221253121))(())(()(kkkkkk)()(241731212kkkk])()([))((101111312212kkkk;时,猜想成立1kn由(1)(2)知,等式对于任意的自然数都成立..,)(.,,)(,,并数学归纳法证明猜想求:已知例nnnnaaaaaaaa213321243211.,,)(9383731432aaa解:)()(*Nnnan532猜想:;,)(成立时,证明:51321111an,)()(5312kakknk时猜想成立,即:假设11kakn时,33kkaa353533kk63k513)(k;时,猜想成立1kn由(1)(2)知,猜想对于任意的自然数都成立..)(.,,,)(),(证明你的猜想并猜想求项和前:设正数列例211213321nnnnnaaaaaaSna,)()(1121111111aaaan时,证明:,)(12121222221aaaaan时,,)(231213333321aaaaaan时,)(*Nnnnan1猜想:)(*Nnnnan1猜想:.)(.,,,)(),(证明你的猜想并猜想求项和前:设正数列例211213321nnnnnaaaaaaSna,)(1111111an时,证明:,)()(112kkakknk时猜想成立,即:假设11kakn时,kkSS1)()(kkkkaaaa12112111kkkkaaaa1111111kkkkk2012121kkakakkaakk1011,;时,猜想成立1kn由(1)(2)知,猜想对于任意的自然数都成立..:,:,,,,*成等比求证满足对于任意项和是前:已知无穷数列例nnnnnnaaaSNnnnSa1124,))(2112112121aaaaan(时,证明:3232113aaaaan)(时,,412a43432114aaaaaan)(时,,813a.,,213213122qaaaaaa成等比,且公比)(,)()(,,,,,),()(*kmaaqaaaaNkkknmmmk12121213211321即:成等比且公比时,假设时,1kn212S1kkkaa2121211kkkkaaaaaa)(212122121211kkkkkaaaa)()(kka2121211221kk21211211211)(1121kka21ka也成等比;121kkaaaa,,,,由(1)(2)知,对于任意的自然数a1,a2,a3,…,an,…成等比..)(,成等差则求证:若项和为的前:设数列例nnnnnaaanSSna2512331313213)()(aaaaaSn时,证:.,成等差、、3213122aaaaaa.,,,,,)()(daaaakknk令公差为成等差时,假设32132)()(:kmdmaam111即11kakn,时kkSS1221111)())((kkaakaak21221111])([))((dkakaakkdkkakakk)()()(11111kdaak11dak也成等差;121kkaaaa,,,,由(1)(2)知,对于任意的自然数a1,a2,a3,…,an,…成等差..,).(,,;,,)(.,,.,,,,并证明猜想:求成等差数列成等比数列满足::数列例nnnnnnnnnnbabbbaaabababababa2132211643243211010110111221nnnnnnbbaaab)(解:21221212bbaaab6422ba,1292333233222babbaaab,20162444344323babbaaab,))((,)(*Nnnnbnann122猜想:成立;时,证:2121111121ban,)(11122nnnnnnbbaaab))((,*Nnnnbnann12猜想:),(,)()(1122kkbkakknkk时猜想成立,即:假设kkkabakn211时,222211)()(kkkkkkkbab112)()(1122kkk]))[(())((11121kkkk;时,猜想成立1kn由(1)(2)知,猜想对于任意的自然数都成立.