五年级下册数学(找次品)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

睿韬奥博詹宇洁小学数学资料一对一贴心辅导辅导老师:杨老师睿韬奥博,孩子放飞梦想的起点;要辅导,首选睿韬奥博。报名电话:15750199340(杨老师)找次品一、填空1.在10个零件里有1个是次品(次品重一些),用天平称,至少称()次就一定能找出次品。答案:3。2.灰太狼用1瓶变形药水(质量比纯净水要稍重一点)偷换了羊村的15瓶纯净水中的1瓶,聪明的喜羊羊至少要称()次才能保证找出这瓶变形药水。考查目的:对找次品的方法的掌握。答案:3。解析:可以把15瓶平均分成三份(5,5,5),把其中的2份分别放在天平上,如果平衡,则剩下的一份就是含有变形药水的;如果不平衡,重的一份就是含有变形药水的一份。再把重的这份分成(2,2,1),用天平来判断找出重的一瓶即为变形药水。3.为了用尽可能少的次数找出次品,你会对待测物品进行分组吗?考查目的:找次品中进行合理分组的能力。答案:解析:在找次品的过程中,为了用最少的次数找出次品,应尽可能把待测物品平均分成3份,故6个待测物品可分为(2,2,2)三组;当待测物品为15个时,至少需要称量3次,可分为(5,5,5)三组;当待测物品为19个时,至少需要称量3次,可分为(7,7,5)三组;当待测物品为25个时,至少需要称量3次,可分为(9,9,7)三组。在分组过程中,可以进行比较,找到解决问题的多种策略及最佳策略。4.有5个零件,其中有一个是次品,重量稍重,根据如图所示可以推断出()号零件一定是正品。考查目的:对找次品的逻辑推理过程的掌握。答案:③④⑤。解析:根据找次品的方法,由于只有一个是次品且其质量稍重,可以肯定这个次品在天平的左边,其他的3个零件都是正品,从而进行正确解答。5.一个偶然的机会,阿凡提从他的朋友那里得到了8枚外表一模一样的金币,但是其中有1枚是假的,重量较轻,于是他找来一架天平,想用它找出那枚假的硬币。想一想,他至少需要用天平称()次才能找出假的硬币。考查目的:利用找次品的方法解决实际问题。答案:2。解析:根据题意,把8枚金币分成三组(3,3,2),把3个一组的分别放在天平的两端。若天平平衡,则次品在2个的一组里,把这2个分成两组(1,1),放在天平两端,轻的就是次品;若天平不平衡,就把轻的一组分成(1,1,1),任选两个放在天平上,若天平平衡,则没称的是次品;若天平不平衡,则轻的是次品。由此可知至少称两次才能找出假的硬币。睿韬奥博詹宇洁小学数学资料一对一贴心辅导辅导老师:杨老师睿韬奥博,孩子放飞梦想的起点;要辅导,首选睿韬奥博。报名电话:15750199340(杨老师)二、选择1.有三袋食盐,其中2袋每袋500克,另一袋不是500克,但不知道比500克轻还是比500克重。用天平至少称()次能保证称出这袋食盐比500克重或轻。用天平找次品基本方法技巧规律用天平找次品时,保证称最少次数找出次品基本方法技巧规律。一、分组原则:把待测物品分成3份。能够均分就平均分成3份;不能平均分的,应让多的与少的一分只相差1。这样才能保证称的次数最少就能找出次品。二、画“次品树形”分组图例1:8个物品中有1个次品,最少称几次能找出次品?①分组8÷3=2…2由此分为3,3,2这三组。②画“次品树形”分组图称第1次称第2次由此可知最少称2次例2:27个物品中有1个次品,最少称几次能找出次品?①分组27÷3=9由此分为9,9,9这三组。②画“次品树形”分组图称第1次称第2次称第3次由此可知最少称3次833211127999333111睿韬奥博詹宇洁小学数学资料一对一贴心辅导辅导老师:杨老师睿韬奥博,孩子放飞梦想的起点;要辅导,首选睿韬奥博。报名电话:15750199340(杨老师)三、探索规律,深化总结用天平找次品时,所测物品与测试的次数有以下关系(只含一个次品,已知次品比正品轻或重)要辨别的物品数目保证能找出次品需要测的次数2--314--9210--27328--81482--2435…………总结:称n次,最多可以分辨3的n次方个物品数目。(3的n次方表示n个3相乘)用天平找次品的规律和公式总结知道次品的轻重(偏轻或偏重)才可以这么少次数的。保证找出次品又节省对称次数的称法是把待测物品分为3组。如除以3后的余数为2,将余下的2个分配给两组,先让该两组对称,平,则取第三组分为3组(大于3个时),重复上诉方法。余数为1,将余下的1个分配给不进行第一次对称的一组,接下来的方法与余数为2时相同。这样一来,每增加2倍(原来的3倍),就会增加1次对称次数。1到3个只需要称1次4到9个需要称2次10到27个需要称3次28到81个需要称4次……………………你发现了什么规律??3=3的1次方,9=3的2次方,27=3的3次方,81=3的4次方…………81个零件,分成3堆,每堆27个,第一堆放在天平左边,第二堆放在天平右边,最后一堆放在一边。称第一次:如果两边相等,那么次品在最后一堆里。把27个可疑零件分为3堆,每堆9个,也是把第一堆放在天平左边,………………同上。称第二次:如果左边的轻,则再把9个可以零件分成3份,分别放在天平左边、右边、别的地方。称第三次:如果一样重,则再把最后的3个可以零件放在天平左边、右边、别的地方。称第四次,就可称出次品。用天平找次品,如下表:(只含一个次品,已知次品重量比正品重或轻。)2~3个物品1次保证能测出;(2——3^1)睿韬奥博詹宇洁小学数学资料一对一贴心辅导辅导老师:杨老师睿韬奥博,孩子放飞梦想的起点;要辅导,首选睿韬奥博。报名电话:15750199340(杨老师)4~9个物品2次保证能测出;(3^1+1——3^2)10~27个物品3次保证能测出;(3^2+1——3^3)28~81个物品4次保证能测出;(3^3+1——3^4)82~243个物品5次保证能测出;(3^4+1——3^5)…………要保证6次能测出次品,物品数目最多多少个?还有,这有什么规律?为什么?所以,要保证6次能测出次品,物品数目最多为:3^6=729个(按照上述括号内的规律可以发现,6次能测出次品的范围是:3^5+1——3^6)①已知“2~3个物品1次保证能测出”,那么2——3(也就是2——3^1《表示3的1次方》)需要1次可以称出;②已知“4~9个物品1次保证能测出”,那么4——9(也就是3^1+1——3^2《表示3的2次方》)需要2次可以称出;……以下均按照这个规律!现在明白没?4个物体,一个是次品,不知道轻重,最少用天平称几次保证找出来最佳答案2次。设物体好为1、2、3、4.为不失一般性,第一种情况:称1和2,如果平,则3、4中有一次品,称1(或者2)和3,如果不平,3是次品,否则4是次品。第二种情况:称1和2,如果不平,则1、2中有一次品,称3(或者4)和1,如果不平,1是次品,否则2是次品。有13个兵乓球,其中有一个次品,不知道轻重,用天平最多3次一定找到次品将球分城3堆。4,4,5将两堆4个的分别放在天平两端当天平平衡的时候:天平上八个球都为正常重量所寻小球肯定在5个一堆里面将五个球分两堆,2,3将3个的那堆与正常球中取出的三个球分别放在天平两端平衡:可得不正常球在剩下两个中,取其中一个正常与其比较重量,不等则为此球,相等则为另一个球不平衡:则可知道不正常球在这三个球中,且知道比正常球重还是轻(已经与正常球进行过比较),此处我们设重(或轻),在此三球中取其二放于天平两端,若平衡,则为剩下那个小球,若不平衡,则重(轻)者为该小球我们回到第一此之后,若不平衡:则不正常小球在此八球中,其余5球为正常球,设原分左右盘,左盘中四球为A,右盘中为B,于A中任取3球放于外面,将B中任取3球放于左盘,取3个正常球放于右盘,不同情况有三种显现,一一讨论:平衡:此时球肯定在A中取出的3球中,且重量已知(通过第一次称量可得,若原A重,则为重球,若原B重,则为轻球),按前步骤可得结果。天平安原方向倾斜:此时,小球定在A,B中没有动过的球中,可拿一正常球与其一比较重量,可得结果睿韬奥博詹宇洁小学数学资料一对一贴心辅导辅导老师:杨老师睿韬奥博,孩子放飞梦想的起点;要辅导,首选睿韬奥博。报名电话:15750199340(杨老师)天平安与原方向不同方向倾斜:此时可知不正常小球在从B中取出的右盘放到左盘的三个小球中,且知道轻重(于第一次称时得出),此时按平衡时的方法可得结果11个球,1个次品,不知道轻重,用天平称3次找出来现在公布答案:1,2,3,4,5,6,7,8,9,10,11第一次称:1234vs5678假设右边重(平衡的话就简单了,就不说了,如果左边重,逆向处理下就ok)第二次称:1678vs5,9,10,11(平衡的话很简单了,2-4是坏的,并且轻,如果左重,坏球是6-8号,并且重。如果右重,坏球是1,5号。具体怎么整还要看第三次)第三次称:1vs2完美解决问题,

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功