凯利公式详细推导

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Ft,上面帖子中的一个笔误,应该是:“期望收益率相同的条件下,参与方差大的赌局,资金的增长速度要慢。”举个例子上面例子中的仓位选择,实际上是组合的一种技术。思考一下,最优的投资比例f=50%,是说每次只将资金的50%用于下注。这固然是一个仓位问题,但再思考一下,那另外50%的资金是什么?是拿在手中的现金。所以f=50%实际上也是一个组合:赌注和现金的组合。在上面的例子中,如果不使用组合技术,也即在参与赌局的时候,不将资金分成现金和赌注两个部分,或者只持有现金,或者全部用于下注,则容易看到,资金最终都将不会出现增长。但是,在把资金变成赌注和现金的组合之后,资金就可以实现增长。值得思考的一个问题是,我们知道,现金不产生任何收益,但是在上面的例子中,为什么把一部分的资金以现金的方式拿在手中,反而能够促使资金总额实现增长?这表面上,似乎是现金导致了资金的增长。是不是有点费解?其中的道理,如果把“赌局”这个词改成“股票”或者“期货”,就容易理解得多(我在前面已经说明,在我这里,赌局与证券、交易系统、投资项目等等概念的内涵是等价的)。因为现金和赌注的组合比例f是一个固定的比例,如果股票价格升高,则总资金中投在股票上的金额所占的比例也升高,这时为了保持f固定不变,就需要卖出一部分股票以变成现金;如果股价价格下降,则总资金中投在股票上的金额所占的比例也下降,为了保持f固定不变,就拿出一部分现金用于买入股票。所以,这里的赌注和现金就好象两个水池,比例f就好像它们之间的一个自动化的水泵,赌注上的资金多了,水泵就自动把资金往现金这个池子里面送;现金上的资金多了,水泵就自动把资金往赌注这个池子里面送。这样送来送去,在不做任何预测的情况下,却自动实现了“买低卖高”的效果。这正是对“重操作、不预测”的一个极好的注解。④超越极限但是就上面所讨论的这个赌局而言,其可挖掘的赢利潜力,或者可实现的资金增长速度,还可以继续突破平均每次增长25%这个速度。或许有人要问:既然上面已经说明,在这个赌局下25%的增长速度已经是一个极限,怎么还可以被突破?这里需要特别说明:以上的极限是对等分投资法而言的。要突破这个极限,自然需要利用组合技术来构造新的投资方法。突破极限的方法千变万化,其中有这样一条原理:组合所运用的资产种类越多,理论上资金增长所能达到的最快速度至少不会越慢(注意是最快的速度、而不是任意组合下的增长速度)。这在数学上是很自然的:组合所运用的资产种类数(记为N)加上资金的增长速度一起定义了一个N+1维空间,在N+1维空间上,资金增长所能达到的最快速度当然不会低于资金在N维空间上的能达到的最快速度。不严格地来说,这条原理可以理解为:要对资金的增长进行提速,可以通过增加组合所运用的资产种类数的方法来实现。当然组合资产的种类增加,各资产在组合中的最优比例也会发生变化、而且经常是不成比例变化。至于具体比例的确定,仍然是求解(12)式。可以理解,以上原理并不考虑一个人管理组合的能力。虽然依照原理,运用资产的种类越多,资金的最快增长速度越快,但是实际运用中,随着组合所运用的资产种类的增加,组合的管理难度呈几何级数增大。所以,实际操作中,个人管理组合的能力将构成组合复杂程度的上限。不过这条原理并不是重点。在此之前举例中所使用的组合技术都不涉及相关性。下面则要将相关性引入到组合技术中,以创造奇迹。回顾一下我们所考虑的赌局:猜硬币的正反面,输和赢的概率各为50%,赢的净收益率为1,输的净收益率为-0.5。假设可以用于构建组合的材料只有这么一个赌局,你能构造出更好的赌法吗?事实上,对于这样的一个赌局,可以作荷兰赌:把资金等分成两份,一份押正面,一份押反面。通过两边下注,最后的结果将只有一种:一份赌注输,另一份赌注赢。这种赌法下,每赌一局,收益率以100%的概率为0.5×1-0.5×0.5=0.25。应该理解,这种赌法实际上是一个多空套利组合,该组合以100%的概率可以获得0.25的收益率。对于稳赚不赔的赌局,想都不用想,最优的投资比例f应该是无穷大。相应地,g也将是无穷大。这意味着,通过采用这种荷兰赌,赌徒可以彻底消除风险,使得赌徒的最优选择应该是无限借款来参与该赌局。理论上,资金的增长速度可以达到无穷大,实际操作中,对资金增长速度的唯一限制是赌徒的借款能力。这样,对于同一个赌局,通过组合技术,资金的增长速度已经从0提高到6.1%,从6.1%又提高到11.8%,再从11.8%提高到25%,最后干脆提高到了无穷大。风险被彻底打倒。可以注意到,在荷兰赌下,赌局的输赢概率失去了作用。由此,我们又可以实现一个突破:利用荷兰赌法,我们可以参与一些期望收益率为负的赌局,并且仍然可以实现无穷大的资金增长速度。考虑这样一个赌局:赌局有输和赢两种结果,赢的概率为0.1,净收益率为1;输的概率为0.9,净收益率为-0.5。易得该赌局的期望收益率为:0.1×1+0.9×(-0.5)=-0.350。对该赌局可以作相同的荷兰赌,不论每局的最后结果是什么,赌徒依旧可以确定地获得0.5×1-0.5×0.5=0.25的收益率。既然收益率可以确定地为正,那理论上的资金增长率自然是无穷大。于是似乎产生了一个矛盾:我在前面一再强调,期望收益率为负的赌局是不值得参与的,并且把这一点当做黄金准则来提出,但是现在我又表明同样可以从一个期望收益率为负的赌局中实现无穷大的资金增长速度。是那条黄金准则错了吗?黄金准则没有错,这其中的关键在于我所采用的赌法。这里的荷兰赌,是利用完全的负相关性构造了一个套利组合,从而在本质上改变了赌局的性质:使得一个期望收益率为负的赌局变成一个收益率100%为正的赌局。创造这一奇迹的是相关性。或许可以这样来进行比喻:不涉及相关性的组合仅能使赌局的风险发生物理变化,但是相关性则可以使赌局的风险发生化学变化,也即风险本质的变化。或许在不少人的认识中,相关性是组合技术中的障碍。如果一个人对组合的认识仅止于分散风险,那相关性确实是个障碍:它经常会破坏了分散的效果,而且增加了计算的难度。从分散风险的用意出发,相关性通常是要竭力避免的。例如现在的理财专家几乎100%会建议实施资产配置(Assetallocation),其用意就是要规避构成组合的各类资产之间的相关性,以提高分散风险的效果。但一味抱着分散风险的念头去搞组合,未免太保守了。把相关性视为障碍而予以丢弃,实在有些浪费。搞套利(arbitrage)、搞对冲(hedge),相关性是必用的工具。事实上,相关性、尤其是完美的相关性,方具有点石成金、创造奇迹的魔力。顺带,我们可能会关心,对于什么样的赌局可以采用荷兰赌?⑥更宽阔的视野荷兰赌的结果是100%赚,这是最好的结果。稍微次一点的结果是100%不赔,同时赚的概率0,即期权。期权并不仅仅是在交易所交易的期权的合约。现实生活中期权大量存在,而且即使它原本不存在,但也可以运用组合技术来制造。制造看涨期权的最经典的“配方”是用债券和股票来制造。当然,这里所指的债券和股票并不完全等同于在交易所交易的债券和股票,这里的债券是指所有可以稳定获取收益的资产,例如持有期与到期期限匹配的国债、银行存款等等;这里的股票是指所有收益不确定的资产,例如交易所交易的股票、持有期限与到期期限不匹配的债券、投资基金、风险投资项目等等。经典的看涨期权制造工序如组合保险策略。简单地说就是构造一个债券和股票的组合,用债券上的稳定收益来保本,用剩余的资金来投资高风险的股票,来博取风险收益。现在运用组合保险策略的基金越来越多,例如现在正在发行中的天同保本增值基金。自然,这种期权制造方法并不是基金公司的专利,而是任何人均可使用的方法。并且,期权也不仅仅是一种静态的证券或者证券组合,它也可以是动态的交易策略。譬如论坛上经常提到的金字塔式加仓规则,也可以用构造看涨期权的方法来构建。举个简单的例子:有20万的现金,先将这笔钱存银行,假设存款年利率为5%,则一年后可以收到1万元的利息。收到利息之后,比方说看多铜期货,则可以买入1手铜合约。如果铜价下跌使得保证金不足,则减仓;如果铜价上涨,使得账户上的闲置保证金足以买进另一手铜合约,则将仓位提高到2手。要言之,把加仓/减仓所用的资金或保证金建立在原先头寸的盈利/亏损之上。当然这是一个很粗糙的例子,具体的加仓选择应该结合实际的交易系统来考虑。自然,适用荷兰赌的赌局也同样可以制造。在金融工程师眼,任何的赌局、证券、投资项目、投资组合、商业合约、乃至投资策略等等,都无非是一组现金流在时间和空间上的分布,因此性质都是等价的。这组现金流在时间上、空间上既可无限拆分、也可无限组合,现金流在时间和空间上的分布结构也可无限改变,无所不能制造,一如我们身处的物质世界。一切的一切,只取决于你取材用料、剪裁组合的技术水平。这些东西听起来似乎很深奥,而且真正做起来也不会很容易,但是只要有关于线性空间和基的数学知识,其中的原理不言自明。随着目前国内对证券交易品种的逐步开禁,组合技术可以运用的材料日渐丰富。首支LOF的发行、首支ETF即将发行、刚刚上市的燃料油期货、不远的将来可以看得见的铜期权、黄金远期、股指期货期权等等。有人感觉到目前的中国正处于英国八十年代金融大爆炸的前夕。在国内运用组合技术的空间日益扩大。机构做庄即将成为历史,对做庄的兴趣将被搞组合、搞对冲套利的兴趣取代。但是应该明白,金融工程组合技术的最佳运用并不是去挑战和战胜风险,而是制造和转移风险供外行或好事者去挑战和娱乐。大家都知道开赌场很赚钱的,推出一个金融衍生工具供大家交易,与开一个赌场可有一比,都很赚钱的。事实上,真正能够总是做到只赚不赔的大多并不是赌客,而是开赌场的场主。当然,金融衍生工具对于社会来说还是非常有益的,这也是为什么赌场通常是违法的,但是金融衍生品交易通常可以合法,而且会得到政府的推动。就譬如银行目前发放的住房抵押贷款绝大多数是浮动利率贷款,如此一来,使得利率波动的风险完全由作为贷款人的小老百姓来承担,银行自己则落得逍遥自在。未来的利率一定会上升,不知道在浮动利率贷款下,会有多少家庭有一天会突然发现自己再也付不起因利率上涨而暴增的贷款利息,以至于不得不让银行拿走自己已经供了几年乃至十几年、二十几年的房子?将来这样的家庭一定会有很多的。所以中国很需要有住房浮动利率贷款对固定利率贷款的互换。可以预见,将来的中国一定会出现提供这种互换产品的市场。谁提供这种服务,谁就等于是开了个正义的赌场,既给自己创收,又有利于千家万户,而且也可以给好事者、套利者提供更多的娱乐。这样一桩既有肥肥实惠又有无量功德的美事,但不知哪个要先下手?由于时间的原因,到这里这个帖子不得不收尾。当然,对数投资组合理论并没有全部讲完。作为一个完整的理论,还有三大内容没有讲:1.连续时间下的对数投资组合理论。在上面的帖子中,举的例子都是抛硬币的赌局,那如果投资的是收益率有无穷多种可能的股票期货呢?这就是连续时间下的对数投资理论所讨论的问题。向连续时间情形的拓展并没有突破(12)式,但理论的形式已经相当复杂,在这里讲也没有意思。2.对数投资组合理论与Markowitz的投资组合理论的对比。这样两种理论所得出的最优投资组合是不同的。它们之间的联系、区别是怎样的?作为一个完整的理论,这也是必须讨论的。不过,如果以资金的增长速度作为标准,则对数投资组合理论要优于Markowitz的投资组合理论。事实上,一定不会再有其它的组合理论能够在资金增长速度上超越这里所讲的对数投资组合理论。3.但对数投资组合理论的缺点。例如Kelly公式,并不适用于每一个人。缺陷就是,例如按照Kelly公式参与赌博,资金的增长速度肯定是所有赌法中最快的,但是资金的波动性也很大,也就是说,一定会遭遇到一次以上的重大亏损。尽管这些亏损所损失的只不过是你原先的盈利,但这也不是每一个人都能够承受的。所以就有针对这一缺陷的修补方法。修补的方法是给(12)式加若干限制条件。但是无论把修补方法搞得怎么复杂,最后的结果一定是降低投资比例。譬如,如果理论计算出来的最优投资比例是20%,最后修补来修补去,无非是把最优投资比例降低一些。一

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功