24.1圆的有关性质第二十四章圆导入新课讲授新课当堂练习课堂小结24.1.2垂直于弦的直径1.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点)3.灵活运用垂径定理解决有关圆的问题.(难点)学习目标你能通过折叠的方式找到圆形纸片的对称轴吗?在折的过程中你有何发现?圆是轴对称图形,任何一条直径所在直线都是它的对称轴.导入新课讲授新课圆的对称轴一(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(2)你是怎么得出结论的?圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.用折叠的方法●O说一说问题:如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有那些相等的线段和劣弧?为什么?线段:AE=BE弧:AC=BC,AD=BD⌒⌒⌒⌒理由如下:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC和BC,AD与BD重合.⌒⌒⌒⌒·OABDEC垂径定理及其推论二垂径定理·OABCDE垂直于弦的直径平分弦,并且平分弦所对的两条弧.∵CD是直径,CD⊥AB,∴AE=BE,⌒⌒AC=BC,⌒⌒AD=BD.推导格式:温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.归纳总结想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?是不是,因为没有垂直是不是,因为CD没有过圆心ABOCDEOABCABOEABDCOE垂径定理的几个基本图形:ABOCDEABOEDABODCABOC归纳总结如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?思考探索DOABEC举例证明其中一种组合方法已知:求证:①CD是直径②CD⊥AB,垂足为E③AE=BE④AC=BC⑤AD=BD⌒⌒⌒⌒证明猜想如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?(2)·OABCDE⌒AC与BC相等吗?AD与BD相等吗?为什么?⌒(2)由垂径定理可得AC=BC,AD=BD.⌒⌒⌒⌒(1)连接AO,BO,则AO=BO,又AE=BE,∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.证明举例⌒⌒思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.垂径定理的推论·OABCD特别说明:圆的两条直径是互相平分的.归纳总结例1如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.·OABE解析:连接OA,∵OE⊥AB,∴AB=2AE=16cm.16一垂径定理及其推论的计算三∴22221068AEOAOEcm.典例精析例2如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.·OABECD解:连接OA,∵CE⊥AB于D,∴1184(cm)22ADAB设OC=xcm,则OD=x-2,根据勾股定理,得解得x=5,即半径OC的长为5cm.x2=42+(x-2)2,例3:已知:⊙O中弦AB∥CD,求证:AC=BD.⌒⌒.MCDABON证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则AM=BM,CM=DM(垂直平分弦的直径平分弦所对的弧)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件..CDABO.CDABOCDABOMNMMNEE.ACDBO.ACDBO.ABO.ABOABO归纳总结试一试:根据刚刚所学,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗?垂径定理的实际应用四解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.解得R≈27.3(m).即主桥拱半径约为27.3m.=18.52+(R-7.23)2∴AD=AB=18.5m,OD=OC-CD=R-7.23.222OAADODQ,练一练:如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为________.64CDCBOADOAB图a图b2cm或12cm在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.涉及垂径定理时辅助线的添加方法弦a,弦心距d,弓形高h,半径r之间有以下关系:弓形中重要数量关系ABCDOhrd2222ardd+h=rOABC·归纳总结视频:垂径定理微课讲解1.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.5cm2.⊙O的直径AB=20cm,∠BAC=30°则弦AC=.103cm3.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.14cm或2cm当堂练习4.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴四边形ADOE为正方形.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE即AC=BD..ACDBOE注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法.6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.解:连接OC.●OCDEF,CDOE11600300(m).22CFCD222,OCCFOF22230090.RR设这段弯路的半径为Rm,则OF=(R-90)m.根据勾股定理,得解得R=545.∴这段弯路的半径约为545m.拓展提升:如图,⊙O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围.3cm≤OP≤5cmBAOP垂径定理内容推论辅助线一条直线满足:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”)垂直于弦的直径平分弦,并且平分弦所对的两条弧两条辅助线:连半径,作弦心距构造Rt△利用勾股定理计算或建立方程.基本图形及变式图形课堂小结见《学练优》本课时练习课堂作业