0ADC0809中文资料以及和单片机接口电路设计和程序

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

典型的集成ADC芯片为了满足多种需要,目前国内外各半导体器件生产厂家设计并生产出了多种多样的ADC芯片。仅美国AD公司的ADC产品就有几十个系列、近百种型号之多。从性能上讲,它们有的精度高、速度快,有的则价格低廉。从功能上讲,有的不仅具有A/D转换的基本功能,还包括内部放大器和三态输出锁存器;有的甚至还包括多路开关、采样保持器等,已发展为一个单片的小型数据采集系统。尽管ADC芯片的品种、型号很多,其内部功能强弱、转换速度快慢、转换精度高低有很大差别,但从用户最关心的外特性看,无论哪种芯片,都必不可少地要包括以下四种基本信号引脚端:模拟信号输入端(单极性或双极性);数字量输出端(并行或串行);转换启动信号输入端;转换结束信号输出端。除此之外,各种不同型号的芯片可能还会有一些其他各不相同的控制信号端。选用ADC芯片时,除了必须考虑各种技术要求外,通常还需了解芯片以下两方面的特性。(1)数字输出的方式是否有可控三态输出。有可控三态输出的ADC芯片允许输出线与微机系统的数据总线直接相连,并在转换结束后利用读数信号RD选通三态门,将转换结果送上总线。没有可控三态输出(包括内部根本没有输出三态门和虽有三态门、但外部不可控两种情况)的ADC芯片则不允许数据输出线与系统的数据总线直接相连,而必须通过I/O接口与MPU交换信息。(2)启动转换的控制方式是脉冲控制式还是电平控制式。对脉冲启动转换的ADC芯片,只要在其启动转换引脚上施加一个宽度符合芯片要求的脉冲信号,就能启动转换并自动完成。一般能和MPU配套使用的芯片,MPU的I/O写脉冲都能满足ADC芯片对启动脉冲的要求。对电平启动转换的ADC芯片,在转换过程中启动信号必须保持规定的电平不变,否则,如中途撤消规定的电平,就会停止转换而可能得到错误的结果。为此,必须用D触发器或可编程并行I/O接口芯片的某一位来锁存这个电平,或用单稳等电路来对启动信号进行定时变换。具有上述两种数字输出方式和两种启动转换控制方式的ADC芯片都不少,在实际使用芯片时要特别注意看清芯片说明。下面介绍两种常用芯片的性能和使用方法。1.ADC0808/0809ADC0808和ADC0809除精度略有差别外(前者精度为8位、后者精度为7位),其余各方面完全相同。它们都是CMOS器件,不仅包括一个8位的逐次逼近型的ADC部分,而且还提供一个8通道的模拟多路开关和通道寻址逻辑,因而有理由把它作为简单的“数据采集系统”。利用它可直接输入8个单端的模拟信号分时进行A/D转换,在多点巡回检测和过程控制、运动控制中应用十分广泛。1)主要技术指标和特性(1)分辨率:8位。(2)总的不可调误差:ADC0808为±21LSB,ADC0809为±1LSB。(3)转换时间:取决于芯片时钟频率,如CLK=500kHz时,TCONV=128μs。(4)单一电源:+5V。(5)模拟输入电压范围:单极性0~5V;双极性±5V,±10V(需外加一定电路)。(6)具有可控三态输出缓存器。(7)启动转换控制为脉冲式(正脉冲),上升沿使所有内部寄存器清零,下降沿使A/D转换开始。(8)使用时不需进行零点和满刻度调节。2)内部结构和外部引脚ADC0808/0809的内部结构和外部引脚分别如图11.19和图11.20所示。内部各部分的作用和工作原理在内部结构图中已一目了然,在此就不再赘述,下面仅对各引脚定义分述如下:图11.19ADC0808/0809内部结构框图(1)IN0~IN7——8路模拟输入,通过3根地址译码线ADDA、ADDB、ADDC来选通一路。(2)D7~D0——A/D转换后的数据输出端,为三态可控输出,故可直接和微处理器数据线连接。8位排列顺序是D7为最高位,D0为最低位。(3)ADDA、ADDB、ADDC——模拟通道选择地址信号,ADDA为低位,ADDC为高位。地址信号与选中通道对应关系如表11.3所示。(4)VR(+)、VR(-)——正、负参考电压输入端,用于提供片内DAC电阻网络的基准电压。在单极性输入时,VR(+)=5V,VR(-)=0V;双极性输入时,VR(+)、VR(-)分别接正、负极性的参考电压。图11.20ADC0808/0809外部引脚图表11.3地址信号与选中通道的关系地址选中通道ADDCADDBADDA000011110011001101010101IN0IN1IN2IN3IN4IN5IN6IN7(5)ALE——地址锁存允许信号,高电平有效。当此信号有效时,A、B、C三位地址信号被锁存,译码选通对应模拟通道。在使用时,该信号常和START信号连在一起,以便同时锁存通道地址和启动A/D转换。(6)START——A/D转换启动信号,正脉冲有效。加于该端的脉冲的上升沿使逐次逼近寄存器清零,下降沿开始A/D转换。如正在进行转换时又接到新的启动脉冲,则原来的转换进程被中止,重新从头开始转换。(7)EOC——转换结束信号,高电平有效。该信号在A/D转换过程中为低电平,其余时间为高电平。该信号可作为被CPU查询的状态信号,也可作为对CPU的中断请求信号。在需要对某个模拟量不断采样、转换的情况下,EOC也可作为启动信号反馈接到START端,但在刚加电时需由外电路第一次启动。(8)OE——输出允许信号,高电平有效。当微处理器送出该信号时,ADC0808/0809的输出三态门被打开,使转换结果通过数据总线被读走。在中断工作方式下,该信号往往是CPU发出的中断请求响应信号。3)工作时序与使用说明ADC0808/0809的工作时序如图11.21所示。当通道选择地址有效时,ALE信号一出现,地址便马上被锁存,这时转换启动信号紧随ALE之后(或与ALE同时)出现。START的上升沿将逐次逼近寄存器SAR复位,在该上升沿之后的2μs加8个时钟周期内(不定),EOC信号将变低电平,以指示转换操作正在进行中,直到转换完成后EOC再变高电平。微处理器收到变为高电平的EOC信号后,便立即送出OE信号,打开三态门,读取转换结果。图11.21ADC0808/0809工作时序模拟输入通道的选择可以相对于转换开始操作独立地进行(当然,不能在转换过程中进行),然而通常是把通道选择和启动转换结合起来完成(因为ADC0808/0809的时间特性允许这样做)。这样可以用一条写指令既选择模拟通道又启动转换。在与微机接口时,输入通道的选择可有两种方法,一种是通过地址总线选择,一种是通过数据总线选择。如用EOC信号去产生中断请求,要特别注意EOC的变低相对于启动信号有2μs+8个时钟周期的延迟,要设法使它不致产生虚假的中断请求。为此,最好利用EOC上升沿产生中断请求,而不是靠高电平产生中断请求。2.AD574AAD574A是美国AD公司的产品,是目前国际市场上较先进的、价格低廉、应用较广的混合集成12位逐次逼近式ADC芯片。它分6个等级,即AD574AJ、AK、AL、AS、AT、AU,前三种使用温度范围为0~+70℃,后三种为-55~+125℃。它们除线性度及其他某些特性因等级不同而异外,主要性能指标和工作特点是相同的。1)主要技术指标和特性(1)非线性误差:±1LSB或±21LSB(因等级不同而异)。(2)电压输入范围:单极性0~+10V,0~+20V,双极性±5V,±10V。(3)转换时间:35μs。(4)供电电源:+5V,±15V。(5)启动转换方式:由多个信号联合控制,属脉冲式。(6)输出方式:具有多路方式的可控三态输出缓存器。(7)无需外加时钟。(8)片内有基准电压源。可外加VR,也可通过将VO(R)与Vi(R)相连而自己提供VR。内部提供的VR为(10.00±0.1)V(max),可供外部使用,其最大输出电流为1.5mA;(9)可进行12位或8位转换。12位输出可一次完成,也可两次完成(先高8位,后低4位)。2)内部结构与引脚功能AD574A的内部结构与外部引脚如图11.22所示。从图可见,它由两片大规模集成电路混合而成:一片为以D/A转换器AD565和10V基准源为主的模拟片,一片为集成了逐次逼近寄存器SAR和转换控制电路、时钟电路、三态输出缓冲器电路和高分辨率比较器的数字片,其中12位三态输出缓冲器分成独立的A、B、C三段,每段4位,目的是便于与各种字长微处理器的数据总线直接相连。AD574A为28引脚双列直插式封装,各引脚信号的功能定义分述如下:图11.22AD574A的结构框图与引脚(1)12/8——输出数据方式选择。当接高电平时,输出数据是12位字长;当接低电平时,是将转换输出的数变成两个8位字输出。(2)A0——转换数据长度选择。当A0为低电平时,进行12位转换;A0为高电平时,则为8位长度的转换。(3)CS——片选信号。(4)R/C——读或转换选择。当为高电平时,可将转换后数据读出;当为低电平时,启动转换。(5)CE——芯片允许信号,用来控制转换与读操作。只有当它为高电平时,并且CS=0时,R/信号的控制才起作用。CE和CS、R/C、12/8、A0信号配合进行转换和读操作的控制真值表如表11.4所示。(6)VCC——正电源,电压范围为0~+16.5V。(7)Vo(R)——+10V参考电压输出端,具有1.5mA的带负载能力。表11.4AD574A的转换和读操作控制真值表CECSCR/12/8A0操作内容0×11111×100000××00111××××+5VDGNDDGND××01×01无操作无操作启动一次12位转换启动一次8位转换并行读出12位读出高8位(A段和B段)读出C段低4位,并自动后跟4个0(8)AGND——模拟地。(9)GND——数字地。(10)Vi(R)——参考电压输入端。(11)VEE——负电源,可选加-11.4V~-16.5V之间的电压。(12)BIPOFF——双极性偏移端,用于极性控制。单极性输入时接模拟地(AGND),双极性输入时接Vo(R)端。(13)Vi(10)——单极性0~+10V范围输入端,双极性±5V范围输入端。(14)Vi(20)——单极性0~+20V范围输入端,双极性±10V范围输入端。(15)STS——转换状态输出端,只在转换进行过程中呈现高电平,转换一结束立即返回到低电平。可用查询方式检测此端电平变化,来判断转换是否结束,也可利用它的负跳变沿来触发一个触发器产生IRQ信号,在中断服务程序中读取转换后的有效数据。从转换被启动并使STS变高电平一直到转换周期完成这一段时间内,AD574A对再来的启动信号不予理睬,转换进行期间也不能从输出数据缓冲器读取数据。3)工作时序AD574A的工作时序如图11.23所示。对其启动转换和转换结束后读数据两个过程分别说明如下:图11.23AD574A的工作时序(1)启动转换在CS=0和CE=1时,才能启动转换。由于是CS=0和CE=1相与后,才能启动A/D转换,因此实际上这两者中哪一个信号后出现,就认为是该信号启动了转换。无论用哪一个启动转换,都应使R/C信号超前其200ns时间变低电平。从图11.23可看出,是由CE启动转换的,当R/为低电平时,启动后才是转换,否则将成为读数据操作。在转换期间STS为高电平,转换完成时变低电平。(2)读转换数据在CS=0和CE=1且CR/为高电平时,才能读数据,由12/8决定是12位并行读出,还是两次读出。如图11.23所示,CS或CE信号均可用作允许输出信号,看哪一个后出现,图中为CE信号后出现。规定A0要超前于读信号至少150ns,CR/信号超前于CE信号最小可到零。从表11.4和图11.23可看出,AD574A还能以一种单独控制(stand-alone)方式工作:CE和12/8固定接高电平,CS和A0固定接地,只用CR/来控制转换和读数,CR/=0时启动12位转换,CR/=1时并行读出12位数。具体实现办法可有两种:正脉冲控制和负脉冲控制。当使用350ns以上的CR/正脉冲控制时,有脉冲期间开启三态缓冲器读数,脉冲后沿(下降沿)启动转换。当使用400ns以上的CR/负脉冲控制时,则前沿启动转换,脉冲结束后读数。4)使用方法AD574A有单

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功