第1页(共62页)高考物理难点突破12讲难点1“追碰”问题解题思路“追碰”类问题以其复杂的物理情景,综合的知识内涵及广阔的思维空间,充分体现着考生的理解能力、分析综合能力、推理能力、空间想象能力及理论联系实际的创新能力,是考生应考的难点,也是历届高考常考常新的命题热点.●难点磁场1.为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v=120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s,刹车时汽车受到阻力的大小f为汽车重的0.40倍,该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2)2.一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=10m,如图1-1所示.转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s.光束转动方向如图中箭头所示.当光束与MN的夹角为45°时,光束正好射到小车上.如果再经过Δt=2.5s,光束又射到小车上,则小车的速度为多少?(结果保留两位数字)3.一段凹槽A倒扣在水平长木板C上,槽内有一小物块B,它到槽内两侧的距离均为21,如图1-2所示.木板位于光滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的动摩擦因数为μ.A、B、C三者质量相等,原来都静止.现使槽A以大小为v0的初速向右运动,已知v0<gl2.当A和B发生碰撞时,两者的速度互换.求:(1)从A、B发生第一次碰撞到第二次碰撞的时间内,木板C运动的路程.(2)在A、B刚要发生第四次碰撞时,A、B、C三者速度的大小.●案例探究[例1]从离地面高度为h处有自由下落的甲物体,同时在它正下方的地面上有乙物体以初速度v0竖直上抛,要使两物体在空中相碰,则做竖直上抛运动物体的初速度v0应满足什么条件?(不计空气阻力,两物体均看作质点).若要乙物体在下落过程中与甲物体相碰,则v0应满足什么条件?命题意图:以自由下落与竖直上抛的两物体在空间相碰创设物理情景,考查理解能力、分析综合能力及空间想象能力.B级要求.错解分析:考生思维缺乏灵活性,无法巧选参照物,不能达到快捷高效的求解效果.解题方法与技巧:(巧选参照物法)选择乙物体为参照物,则甲物体相对乙物体的初速度:图1-1图1-2第2页(共62页)v甲乙=0-v0=-v0甲物体相对乙物体的加速度a甲乙=-g-(-g)=0由此可知甲物体相对乙物体做竖直向下,速度大小为v0的匀速直线运动.所以,相遇时间为:t=0vh对第一种情况,乙物体做竖直上抛运动,在空中的时间为:0≤t≤gv02即:0≤0vh≤gv02所以当v0≥2gh,两物体在空中相碰.对第二种情况,乙物体做竖直上抛运动,下落过程的时间为:gv0≤t≤gv02即gv0≤0vh≤gv02.所以当2gh≤v0≤gh时,乙物体在下落过程中与甲物体相碰.[例2]如图1-3所示,质量为m的木块可视为质点,置于质量也为m的木盒内,木盒底面水平,长l=0.8m,木块与木盒间的动摩擦因数μ=0.5,木盒放在光滑的地面上,木块A以v0=5m/s的初速度从木盒左边开始沿木盒底面向右运动,木盒原静止.当木块与木盒发生碰撞时无机械能损失,且不计碰撞时间,取g=10m/s2.问:(1)木块与木盒无相对运动时,木块停在木盒右边多远的地方?(2)在上述过程中,木盒与木块的运动位移大小分别为多少?命题意图:以木块与木盒的循环碰撞为背景,考查考生分析综合及严密的逻辑推理能力.B级要求.错解分析:对隔离法不能熟练运用,不能将复杂的物理过程隔离化解为相关联的多个简单过程逐阶段分析,是该题出错的主要原因.解题方法与技巧:(1)木块相对木盒运动及与木盒碰撞的过程中,木块与木盒组成的系统动量守恒,最终两者获得相同的速度,设共同的速度为v,木块通过的相对路程为s,则有:mv0=2mv①μmgs=21mv02-21·2mv2②图1-3第3页(共62页)由①②解得s=1.25m设最终木块距木盒右边为d,由几何关系可得:d=s-l=0.45m(2)从木块开始运动到相对木盒静止的过程中,木盒的运动分三个阶段:第一阶段,木盒向右做初速度为零的匀加速运动;第二阶段,木块与木盒发生弹性碰撞,因两者质量相等,所以交换速度;第三阶段,木盒做匀减速运动,木盒的总位移等于一、三阶段的位移之和.为了求出木盒运动的位移,我们画出状态示意图,如图1-4所示.设第一阶段结束时,木块与木盒的速度分别为v1、v2,则:mv0=mv1+mv2③μmgL=21mv02-21m(v12+v22)④因在第二阶段中,木块与木盒转换速度,故第三阶段开始时木盒的速度应为v1,选木盒为研究对象对第一阶段:μmgs1=21mv22⑤对第三阶段:μmgs2=21mv12-21mv2⑥从示意图得s盒=s1+s2⑦s块=s盒+L-d⑧解得s盒=1.075ms块=1.425m●锦囊妙计一、高考走势“追碰”问题,包括单纯的“追及”类、“碰撞”类和“追及碰撞”类,处理该类问题,首先要求学生有正确的时间和空间观念(物体的运动过程总与时间的延续和空间位置的变化相对应).同时,要求考生必须理解掌握物体的运动性质及规律,具有较强的综合素质和能力.该类问题综合性强,思维容量大,且与生活实际联系密切,是高考选拔性考试不可或缺的命题素材,应引起广泛的关注.二、“追及”“碰撞”问题指要1.“追及”问题讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题.一定要抓住两个关系:即时间关系和位移关系.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点.2.“碰撞”问题碰撞过程作用时间短,相互作用力大的特点,决定了所有碰撞问题均遵守动量守恒定律.对正碰,根据碰撞前后系统的动能是否变化,又分为弹性碰撞和非弹性碰撞.弹性碰撞:系统的动量和动能均守恒,因而有:m1v1+m2v2=m1v1′+m2v2′①图1-4第4页(共62页)21m1v12+21m2v22=21m1v1′2+21m2v2′2②上式中v1、v1′分别是m1碰前和碰后的速度,v2、v2′分别是m2碰前和碰后的速度.解①②式得v1′=21221212)(mmvmvmm③v2′=21112122)(mmvmvmm④完全非弹性碰撞:m1与m2碰后速度相同,设为v,则m1v1+m2v2=(m1+m2)v,v=21211mmvmvm.系统损失的最大动能ΔEkm=21m1v12+21m2v22-21(m1+m2)v2.非弹性碰撞损失的动能介于弹性碰撞和完全非弹性碰撞之间.在处理碰撞问题时,通常要抓住三项基本原则:(1)碰撞过程中动量守恒原则.(2)碰撞后系统动能不增原则.(3)碰撞后运动状态的合理性原则.碰撞过程的发生应遵循客观实际.如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动.三、处理“追碰”类问题思路方法由示意图找两解决“追碰”问题大致分两类方法,即数学法(如函数极值法、图象法等)和物理方法(参照物变换法、守恒法等).●歼灭难点训练1.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行驶的距离为s,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持距离至少应为多少?2.如图1-5所示,水平轨道上停放着一辆质量为5.0×102kg的小车A,在A的右方L=8.0m处,另一辆小车B正以速度vB=4.0m/s的速度向右做匀速直线运动远离A车,为使A车能经过t=10.0s时间追上B车,立即给A车适当施加向右的水平推力使小车做匀变速直线运动,设小车A受到水平轨道的阻力是车重的0.1倍,分析两物体运动过程画运动示意图由示意图找两物体位移关系据物体运动性质列(含有时间)的位移方程联立方程求解(判断能否碰撞)若发生碰撞,据动量关系(守恒能量转化关系列方程求解图1-5第5页(共62页)试问:在此追及过程中,推力至少需要做多少功?取g=10m/s2)3.如图1-6所示,在光滑的水平面上放置一质量为m的小车,小车上有一半径为R的1/4光滑的弧形轨道,设有一质量为m的小球,以v0的速度,方向水平向左沿圆弧轨道向上滑动,达到某一高度h后,又沿轨道下滑,试求h的大小及小球刚离开轨道时的速度.4.如图1-7所示,长为2L的板面光滑且不导电的平板小车C放在光滑水平面上,车的右端有块挡板,车的质量mC=4m,绝缘小物块B的质量mB=2m.若B以一定速度沿平板向右与C车的挡板相碰,碰后小车的速度总等于碰前物块B速度的一半.今在静止的平板车的左端放一个带电量为+q、质量为mA=m的小物块A,将物块B放在平板车的中央,在整个空间加上一个水平方向的匀强电场时,金属块A由静止开始向右运动,当A以速度v0与B发生碰撞,碰后A以v0/4的速率反弹回来,B向右运动.(1)求匀强电场的场强大小和方向.(2)若A第二次和B相碰,判断是在B与C相碰之前还是相碰之后?(3)A从第一次与B相碰到第二次与B相碰这个过程中,电场力对A做了多少功?5.如图1-8所示,水平放置的导轨,其电阻、摩擦均不计,固定在竖直向下的匀强磁场中,磁感应强度为B,左端间距为2L,右端间距为L,今在导轨上放ab、cd两杆,其质量分为2M、M,电阻分为2R、R,现让ab杆以初速度v0向右运动.求cd棒的最终速度(两棒均在不同的导轨上).参考答案:[难点磁场]1.1.6×102m2.提示:该题为一“追及”的问题,有两种可能解,第一次为物追光点,在相同时间内,汽车与光点扫描的位移相等,L1=d(tan45°-tan30°),则v1=vL1=1.7m/s,第二次为(光)点追物,时间相同,空间位移相同,L2=d(tan60°-tan45°),可得v2=tL2=2.9m/s.3.(1)s=l-gv420(2)vA=41v0;vB=vC=83v0[歼灭难点训练]1.2s2.Wmin=2.8×104J3.小球从进入轨道,到上升到h高度时为过程第一阶段,这一阶段类似完全非弹性的碰撞,动能损失转化为重力势能(而不是热能).据此可列方程:mv0=(m+m)v,①21mv02=21(m+m)v2+mgh②解得h=v02/4g.图1-6图1-7图1-8第6页(共62页)小球从进入到离开,整个过程属弹性碰撞模型,又由于小球和车的等质量,由弹性碰撞规律可知,两物体速度交换,故小球离开轨道时速度为零.说明:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞.拓宽后的碰撞,除例题代表的较长时间的碰撞题型外,还有非接触型碰撞和非弹力作用的碰撞.4.(1)对金属块A用动能定理qEL=21mv02所以电场强度大小E=qLmv220方向水平向右(2)A、B碰撞,由系统动量守恒定律得mAv0=mA(-41v0)+mBvB用mB=2m代入解得vB=85v0B碰后做匀速运动,碰到挡板的时间tB=058vLvLBA的加速度aA=Lv220A在tB段时间的位移为sA=vatB+21atB2=-41v0·21580vL·Lv220·(058vL)2=256L因sA<L,故A第二次与B相碰必在B与C相碰之后(3)B与C相碰,由动量守恒定律可得mBvB=mBvB′+mCvC′vC′=21vBvB′=0A从第一次相碰到第二次与B相碰的位移为L,因此电场力做的功W电=qEL=21mv02.5.320v第7页(共62页)难点2连接体问题分析策略·整体法与隔离法两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.●难点磁场1.如图2-1,质量为2m的物块A与水平地面的摩擦可忽略不计,质量为m的物块B与地面的动摩擦因数为μ,在已知