线性代数-矩阵第二章课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章矩阵•1.矩阵的概念;•2.矩阵的代数运算;•3.矩阵的初等变换;•4.矩阵的求逆运算;•5.分块矩阵。一.矩阵的概念•1.矩阵的定义方程组mnmnmmnnnnbxaxaxabxaxaxabxaxaxa22112222212111212111系数排成一个矩形数表mnmmnnaaaaaaaaa212222111211这就是矩阵由mn个数按一定的次序排成的m行n列的矩形数表称为mn矩阵,简称矩阵.横的各排称为矩阵的行,竖的各排称为矩阵的列ija称为矩阵的第i行j列的元素.元素为实数的称为实矩阵,我们只讨论实矩阵.矩阵通常用大写字母A、B、C等表示,例如mnmmnnaaaaaaaaaA212222111211简记为nmijaA)()(11211naaa12111maaa行矩阵列矩阵脚标nnnnnnnnaaaaaaaaaA212222111211当m=n时,即矩阵的行数与列数相同时,称矩阵为方阵。nnaaa,,,2211称为对角线元素几种特殊形式的矩阵0000.1nmOnnaa11.2kk.311.4nEnnnnaaaaaa22211211.5nnnnaaaaaa21222111.6二.矩阵的代数运算一、线性运算1.相等:两个矩阵相等是指这两个矩阵有相同的行数与列数,且对应元素相等.即nmijaAnmijbB=型号相同ijijba对应元素相等2.加、减法nmijaAnmijbB设同型矩阵为与定义nmijijbaBA)(nmijijbaBA)(显然A+B=B+A(A+B)+C=A+(B+C)A+O=O+A=AA-A=O负矩阵nmijaA的负矩阵为记作-A,即nmijaAnmija3.数乘mnmmnnkakakakakakakakaka212222111211称为数与矩阵的乘法,简称为数乘。记作:kAkA1kA1kAAA1OoAkBkABAklAkAAlkkAllAkAklkAkA)(,)()()()(,nAkAkA是方阵,则二、矩阵的乘法3132121111xaxaxay3232221212xaxaxay232131322212122121111tbtbxtbtbxtbtbx与232132212121113113211211111)()(tbababatbababay232232222122113123212211212)()(tbababatbababay232221131211aaaaaaA323122211211bbbbbbB322322221221312321221121321322121211311321121111babababababababababababa232221131211aaaaaa323122211211bbbbbbsmijaA)(nsijbB)(一般地,有nmijc)(sjisjijiijbababac2211=ABC)(21isiiaaasjjjbbb21ijc3132121111xaxaxay3232221212xaxaxay232131322212122121111tbtbxtbtbxtbtbx32123222113121121xxxaaaaaayy21323122211211321ttbbbbbbxxx与32123222113121121xxxaaaaaayy21323122211211321ttbbbbbbxxx232132212121113113211211111)()(tbababatbababay232232222122113123212211212)()(tbababatbababay则23222113121121aaaaaayy21323122211211ttbbbbbbnssmnmBAC1111,11111BA:例AB0000=O2222BABAAB显然这正是矩阵与数的不同ABBA1101,1241,63422CBA:例6946,6946ACABACABCB但是这又是矩阵与数的不同请记住:1.矩阵乘法不满足交换律;2.不满足消去律;3.有非零的零因子。nnmnmmEAAAEkBABkAABkCABAACBACABCBABCACAB.4)()()(.3)()(.2)().(1BAABBA则为同阶方阵设,,.5ABBA请特别注意性质5,如果不是同阶方阵结果不成立.成立吗mnnmmnnmBABA不成立!课本P39:例2.3三、方阵的正整数幂lklkAAAAAAAkk个定义n阶方阵的k次幂为:kmmkAA)(显然EA0规定kkkBAAB)(注意问等式阶方阵为与设,nBABABABA22成立的充要条件是什么?例:AB=BA四、矩阵的转置nmijaAmnTijaTATTTTTTTkAkABABAAA)()()(TAB)(TTAB请记牢!方阵A的多项式EcAcAcAcAcAPmmmmmiiim01110)(例,854221A;825241TAjiTijaa课本P40:例2.4smijaAnsijbBnmijcABCmnijTTdAB)(msTijTaAsnTijTbBsijsijijskkijkjibabababac22111skjkkiskTkjTikijababd11也就是TTTABAB)(TTTTABCABC)(?11TnnTaajiTijccijd=对称阵与反对称阵AAT:对称阵AAT:反对称阵TTTAAAAAA,,TAATija0iiijjiaaa且ijajia对任一方阵A,我们有证明:TAAC设TTTAAC则AAT,C所以C为对称矩阵.,TAAB设TTTAAB则AAT,B所以B为反对称矩阵.22TTAAAAA,22BC命题得证.例:P42:例2.5证明任一阶矩阵都可表示成对称阵与反对称阵之和.nA矩阵运算加法数与矩阵相乘矩阵与矩阵相乘矩阵的转置小结2.只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律、消去律.1.只有当两个矩阵是同型矩阵时,才能进行加法运算.3.矩阵的数乘运算与行列式的数乘运算不同.注意:课后作业P58:2-1;2-2.1)2)3)7);2-4;2-6;2-7;2-8;P64:2-51.1)).(,)()(jijikcckrrikjiii记作(列)对应元素上去行后加到第乘以常数列行将矩阵的第倍乘变换三.矩阵的初等变换以下三种变换分别称为矩阵的初等行(列)变换:)()(,)(jijiccrrjii的位置,记作列两行对换矩阵中第).(,()(iikckrikii记作列)行乘第用非零常数对调变换倍加变换矩阵的初等行变换与初等列变换统称为初等变换。行阶梯形:每行首个非零元素的下方全是零化简矩阵而保持其等价性。主要作用:矩阵的初等变换是线性代数中一个重要的工具.0000008700543211000098000122103120750011a)2(02kak)1(03kjaj主要过程:利用初等行变换将矩阵化为行阶梯形。41311221222832A2832122122413131rr669044604131131222rrrr223022304131000022304131连接。之间用记号与,化为利用初等变换将BABA利用初等行变换将矩阵A化为行阶梯形矩阵。例1:221r331r23rr利用初等行变换将矩阵化为行最简形。行最简形:每行首个非零元素为1,且这些1所在列的其他元素都是零0111a12ka13ja14la000000301020201A5000202019113123343221B07700111103221000001103221100010001000001103001利用初等行变换将矩阵化为行最简形矩阵。例2:13rr221r351r312rr124rr133rr2111r237rr212rr矩阵的等价定义:对矩阵A实行有限次初等变换得到矩阵B,则称矩阵A与B等价,记作AB.性质:等价矩阵具有自反性、对称性、传递性。CACBBAABBAAA,;;rnmIA0000000000001000001000001A的等价标准形定理:任何一个矩阵都有等价标准形。矩阵A的秩如例1中:000022304131A00002230000114131243cccccc000000100001242323122ccccc推论:矩阵A与B等价的充要条件是A与B有相同的标准形。矩阵的秩.阶子式的矩阵阶子式.12kAk阶行列式,称为素,按原次序组成的个元素交处的列,位于这些行、列相行中任取在:kkkkAnm一般地:个。阶子式有的矩阵knkmCCkAnm2.秩的定义:矩阵A的所有不等于零的子式的最高阶数称为矩阵A的秩.记作r(A).显然r(O)=0;只要A不是零阵,就有r(A)0.并且:};,min{)()(nmArinm).()()(ArAriiT.)(;)()(kArklArliii阶子式全为零,则若所有的阶子式不为零,则若有一个例3.174532321的秩求矩阵A解中,在A,阶子式只有一个的又AA3.03221,且0A.2)(Ar例4,求该矩阵的秩.已知510231202231A,022031502320231解计算A的3阶子式,,0,0510

1 / 80
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功