1第一章有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。2、数轴的三要素是:原点、正方向、单位长度。(三)相反数1、定义:只有符号不同的两个数互为相反数。2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。a(a>0),即对于任何有理数a,都有|a|=0(a=0)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a=b或a=-b.(3)若|a|+|b|=0,则|a|=0,且|b|=0.相关结论:(1)0的相反数是它本身。(2)非负数的绝对值是它本身。(3)非正数的绝对值是它的相反数。(4)绝对值最小的数是0。(5)互为相反数的两个数的绝对值相等。(6)任何数的绝对值都是它的正数或0,即|a|≥0。(五)倒数1、定义:乘积为“1”的两个数互为倒数。2、求法:颠倒这个数的分子和分母。3、a(a≠0)的倒数是1a.2有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。二、有理数的减法法则:减去一个数,等于加上这个数的相反数。三、有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同0相乘,都得0;3、乘积是1的两个数互为倒数。四、有理数的除法法则:1、除以一个不等于0的数,等于乘以这个数的倒数;2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。五、乘方1、定义:求n个相同因数的积的运算,叫做乘方。2、幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;0的任何次正整数次幂都是0。六、有理数的混合运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。七、科学计数法科学计数法(1)定义:把一个绝对值大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。(2)用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。第二章整式的加减一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。多项式:几个单项式的和叫做多项式。整式:单项式与多项式统称整式。二、单项式的系数和次数单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。四、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。五、合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。六、合并同类项步骤:⑴.准确的找出同类项。⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。⑶.写出合并后的结果。七、去括号的法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;3括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。八、整式加减的一般步骤是:(1)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号;括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。(2)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。第三章一元一次方程一、一元一次方程的概念定义:方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是整式,这样的方程叫做一元一次方程。等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如果a=b,那么a±c=b±c等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc移项:把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种变形叫做移项。解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=ba第四章图形认识初步一、常见的立体图形:柱形、锥体、球体1、柱体中有①圆柱:底面是圆,侧面是曲面;②棱柱:底面是多边形,侧面是长方形;2、锥体中有①圆锥:底面是圆,侧面是曲面;②棱锥:底面是多边形,侧面是三角形;二、几何图形都是由点、线、面、体组成的包围着体的是面,面与面相接的地方是线,线和线相交的地方是点。点动成线,线动成面,面动成体,体、面、线、点都是几何图形。三、直线、射线、线段1、直线(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。2、射线(1)概念:直线上一点和它一旁的部分叫做射线。(2)特点:只有一个端点,向一方无限延伸,无法度量。3、线段(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。(2)基本性质:两点之间线段最短。4(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。4、线段的中点:把一条线段分成两条相等线段的点。四、角1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。3、角度制及换算(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。(2)角度制的换算:1°=60′1′=60″1周角=360°1平角=180°1直角=90°4、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。5、余角和补角:(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另一个角的余角;(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;(3)余角的性质:等角的余角相等;等角的性质:同角的补角相等。第五章相交线与平行线1.相交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。2.对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3.对顶角的性质:对顶角相等。4.邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。5.邻补角的性质:邻补角互补。6、垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:垂线段最短。8、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。9、同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。10、内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。11、同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。12、平行线的概念在同一平面内,不相交的两条直线叫做平行线。13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。15、平行线的判定方法:5(1)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。(4)两条直线都和第三条直线平行,那么这两条直线平行。(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。16、命题的概念:判断一件事情的语句叫做命题。17、命题的形式:命题由题设和结论两部分组成,通常可以写成“如果……那么……”的形式。“如果”后面的部分是题设,“那么”后面的部分是结论。18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题。19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移。20、平移的性质:(1)平移后的图形与原图形的形状和大小完全相同;(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。第六章实数一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16是有理数,而不是无理数。3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。二、平方根、算术平方根、立方根1、概念、定义6(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。如果,那么x叫做a的平方根。(3)如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。如果,那么x叫做a的立方根。2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。平方与开平方互为逆运算。(2)求一个数的立方根的运算,叫做开立方。开立方和立方互为逆运算。3、运算符号(1)正数a的算术平方根,记作“a”。(2)a(a≥0)的平方根的符号表达为。(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。4、运算公式5、开方规律小结(1)若a≥0,则a的平方根是a,a的算术平方根a;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。正数的立方根是正数,负数的立方根是负数,0的立方根是0。(2)若a0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。三、实数的性质有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。1、相反数(1)实数a的相反数是-a