七年级下册数学复习提纲(人教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

七年级下册数学复习提纲主备:陈立炜审核:徐芳芳、吴瑞玲第五章相交线与平行线5.1相交线对顶角相等。过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。过两点有且只有一条直线两点之间线段最短余角:两个角的和为90度,这两个角叫做互为余角。补角:两个角的和为180度,这两个角叫做互为补角。对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。同位角:在“三线八角”中,位置相同的角,就是同位角。内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。5.2平行线经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。两条直线被第三条直线所截,如果内错角相等,那么两直线平行。两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。5.3平行线的性质同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两条平行线被第三条直线所截,同位角相等。两条平行线被第三条直线所截,内错角相等。两条平行线被第三条直线所截,同旁内角互补。判断一件事情的语句,叫做命题。第六章实数平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。a的算术平方根读作“根号a”,a叫做被开方数。0的算术平方根是0。如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。求一个数a的平方根的运算,叫做开平方。立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。求一个数的立方根的运算,叫做开立方。实数无限不循环小数又叫做无理数。有理数和无理数统称实数。第七章平面直角坐标系本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。1、记作(a,b);2、注意:a、b的先后顺序对位置的影响。3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(ba,)一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。-3-2-101ab1-1-2-3P(a,b)Yx1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。象限:坐标轴上的点不属于任何象限第一象限:x0,y0第二象限:x0,y0第三象限:x0,y0第四象限:x0,y0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负平行于y轴(或纵轴)的直线上的点的横坐标相同。a)在与x轴平行的直线上,所有点的纵坐标相等;点A、B的纵坐标都等于m;b)在与y轴平行的直线上,所有点的横坐标相等;点C、D的横坐标都等于n;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。c)若点P(nm,)在第一、三象限的角平分线上,则nm,即横、纵坐标相等;d)若点P(nm,)在第二、四象限的角平分线上,则nm,即横、纵坐标互为相反数;在第一、三象限的角平分线上在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数XYABmBXYCDnXyPmnOyPmnOXe)点P),(nm关于x轴的对称点为),(1nmP,即横坐标不变,纵坐标互为相反数;f)点P),(nm关于y轴的对称点为),(2nmP,即纵坐标不变,横坐标互为相反数;g)点P),(nm关于原点的对称点为),(3nmP,即横、纵坐标都互为相反数;关于x轴对称关于y轴对称关于原点对称五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原点平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x>0y>0x<0y>0x<0y<0x>0y<0(m,m)(m,-m)XyP1PnnmOXyP2PmmnOXyP3PmmnOn•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。七、用坐标表示平移:见下图八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。即A(x,y),到x轴的距离=|y|,到y轴的距离=|x|例、若点A到x轴的距离为5,到y轴的距离为4则A的坐标为分析:到x轴的距离为5说明点A的|纵坐标|=5,则纵坐标为5或-5,到y轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。综述,点A的坐标为(4,5)、(4,-5)、(-4,5)、(-4,-5)。类似的,若点M到x轴的距离为3,到y轴的距离为6,且在第二象限,则点M坐标为(前两个条件的分析方法一样,可和四个分类,再加上点M在第二象限,可知点M坐标符号为(-,+),便可确定答案。)九、对称两点的坐标特征:1、关于x轴对称两点:横坐标相同,纵坐标互为相反数。2、关于y轴对称两点:横坐标互为相反数,纵坐标相同。3、关于原点对称两点:横、纵坐标均互为相反数。即:若A(a,b),B(a,-b),则A与B关于x轴对称,若A(a,b),B(-a,b),则A与B关于y轴对称。若A(a,b),B(-a,-b),则A与B关于原点对称P(x,y)P(x,y-a)P(x-a,y)P(x+a,y)P(x,y+a)向上平移a个单位长度向下平移a个单位长度向右平移a个单位长度向左平移a个单位长度

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功