函数知识点与典型例题总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

函数定义域奇偶性图象值域单调性函数的复习主要抓住两条主线1、函数的概念及其有关性质。2、几种初等函数的具体性质。二次函数指数函数对数函数反比例函数一次函数幂函数函数的概念——定义——表示——列表法,解析法,图象法——三要素——定义域,对应关系,值域——值域与最值——观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等——函数的图象函数的基本性质——单调性——1.求单调区间:定义法、导数法、用已知函数的单调性.2.复合函数单调性:同增异减.——对称性——轴对称:f(a-x)=f(a+x);中心对称:f(a-x)+f(a+x)=2b——奇偶性——1.先看定义域是否关于原点对称,再看f(-x)=f(x)还是-f(x).2.奇函数图象关于原点对称,若x=0有意义,则f(0)=0.3.偶函数图象关于y轴对称,反之也成立.——周期性——f(x+T)=f(x);周期为T的奇函数有f(T)=f(T/2)=f(0)=0.函数常见的几种变换——平移变换、对称变换、翻折变换、伸缩变换基本初等函数——正(反)比例函数;一次(二次)函数;幂、指数、对数函数(定义,图象,性质,应用)复合函数——单调性:同增异减;奇偶性:内偶则偶,内奇同外抽象函数——赋值法函数的应用——函数与方程——函数零点、一元二次方程根的分布——常见函数模型——幂、指、对函数模型;分段函数;对勾函数模型函数函数的概念函数的基本性质函数的单调性函数的最值函数的奇偶性函数知识结构BCx1x2x3x4x5y1y2y3y4y5y6A函数的三要素:定义域,值域,对应法则A.B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数。一、函数的概念:二、映射的概念设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y于之对应,那么就称对应f:A→B为集合A到集合B的一个映射映射是函数的一种推广,本质是:任一对唯一使函数有意义的x的取值范围。求定义域的主要依据1、分式的分母不为零.2、偶次方根的被开方数不小于零.3、零次幂的底数不为零.4、对数函数的真数大于零.5、指、对数函数的底数大于零且不为1.6、实际问题中函数的定义域(一)函数的定义域1、具体函数的定义域220.51(1)()2(2)()log(1)(3)()log(43)xfxxfxxfxx例7.求下列函数的定义域1.【-1,2)∪(2,+∞)2.(-∞,-1)∪(1,+∞)3.(3∕4,1】2、抽象函数的定义域1)已知函数y=f(x)的定义域是[1,3],求f(2x-1)的定义域2)已知函数y=f(x)的定义域是[0,5),求g(x)=f(x-1)-f(x+1)的定义域(2){x|})yfx2的定义域为x4,求y=f(x的定义域3)1.[1,2];2.[1,4);3.[-]22,28()lg(43)fxaxaxRa例若的定义域为求实数的取值范围。20;0.1612030.4aRaRaaRaa当时,函数的定义域为,当时,函数的定义域也为函数的定义域为,的取值范围是思考:若值域为R呢?分析:值域为R等价为真数N能取(0,+∞)每个数。当a=0时,N=3只是(0,+∞)上的一个数,不成立;当a≠0时,真数N取(0,+∞)每个数即00a2.函数的值域(1)在函数y=f(x)中,与自变量x的值相对应的y的值叫________,_____________叫函数的值域.(2)基本初等函数的值域函数值函数值的集合基本初等函数值域①y=kx+b(k≠0)②y=ax2+bx+c(a≠0)③④y=ax(a0且a≠1)⑤y=logax(a0且a≠1)⑥y=sinx,y=cosx⑦y=tanx(0)kykxR(0,)R且{|R0}yyy[1,1]R时240,[,);4acbaa240,(,]4时acbaa求值域的一些方法:1、图像法,2、配方法,3、分离常数法,4、换元法,5单调性法。12,6x22yxx1)2)3)xey4)5273xxy)3(log3xy)2(,324)(f51xxxx)三、函数的表示法1、解析法2、列表法3、图象法)(3,4)]([)(设)3()(,2)1()2()1(,34)()1(22xfxxffxfxfxxxfxfxxxf求一次函数,且求已知求已知例10求下列函数的解析式待定系数法换元法(5)已知:对于任意实数x、y,等式恒成立,求)1(2)()(xyxxfyxf)(xf赋值法2(6)()+g()2,()().fxxfxxxxfxgx已知是偶函数,g是奇函数,且求、的解析式构造方程组法(4)已知,求的解析式221)1(xxxxf)0(x()fx配凑法1.函数的单调性增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1x2时,都有____________,那么函数f(x)在区间D上是增函数当x1x2时,都有__________,那么函数f(x)在区间D上是减函数图象描述自左向右看图象是______自左向右看图象是_____f(x1)f(x2)f(x1)f(x2)上升的下降的(1)单调函数的定义写出常见函数的单调区间并指明是增区间还是减区间0,(,0),(0,)0,(,0),(0,)aa时单减区间是时单增区间是1、函数的单调区间是2、函数y=ax+b(a≠0)的单调区间是3、函数y=ax2+bx+c(a≠0)的单调区间是0,(,)0,(,)aa时单增区间是时单减区间是0,(,],[,)220,(,],[,)22bbaaabbaaa时单减区间是单增区间是时单增区间是单减区间是0ayax()用定义证明函数单调性的步骤:(1)设元,设x1,x2是区间上任意两个实数,且x1<x2;(2)作差,f(x1)-f(x2);(3)变形,通过因式分解转化为易于判断符号的形式(4)判号,判断f(x1)-f(x2)的符号;(5)下结论.1.函数f(x)=2x+1,(x≥1)4-x,(x<1)则f(x)的递减区间为()A.[1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,0]B2、若函数f(x)=x2+2(a-1)x+2在区间[4,+∞)上是增函数,求实数a的取值范围.11)(.11)上是增函数,在(证明:函数例xxxf3判断函数的单调性。2xxeey•拓展提升复合函数的单调性复合函数的定义:设y=f(u)定义域A,u=g(x)值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量•复合函数的单调性若u=g(x)增函数减函数增函数减函数y=f(u)增函数减函数减函数增函数则y=f[g(x)]增函数增函数减函数减函数规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。“同增异减”•复合函数的单调性例题:求下列函数的单调性y=log4(x2-4x+3)解设y=log4u(外函数),u=x2-4x+3(内函数).由u>0,u=x2-4x+3,解得原复合函数的定义域为{x|x<1或x>3}.当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.例4:求的单调区间.1223.0xxy解:设由u∈R,u=x2-2x-1,解得原复合函数的定义域为x∈R.因为在定义域R内为减函数,所以由二次函数u=x2-2x-1的单调性易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由x∈R,(复合函数定义域)x≤1,(u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.uy3.0uy3.0•复合函数的单调性小结复合函数y=f[g(x)]的单调性可按下列步骤判断:(1)将复合函数分解成两个简单函数:y=f(u)与u=g(x)。其中y=f(u)又称为外层函数,u=g(x)称为内层函数;(2)确定函数的定义域;(3)分别确定分解成的两个函数的单调性;(4)若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=f[g(x)]为增函数;(5)若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=f[g(x)]为减函数。复合函数的单调性可概括为一句话:“同增异减”。四、函数的奇偶性1.奇函数:对任意的,都有Ix)()(xfxf)()(xfxf2.偶函数:对任意的,都有Ix3.奇函数和偶函数的必要条件:注:要判断函数的奇偶性,首先要看其定义域区间是否关于原点对称!定义域关于原点对称.奇(偶)函数的一些特征1.若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0.2.奇函数图像关于原点对称,且在对称的区间上不改变单调性.3.偶函数图像关于y轴对称,且在对称的区间上改变单调性一个函数为奇函数⇔它的图象关于原点对称.一个函数为偶函数⇔它的图象关于y轴对称.3.性质:奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.(2)在定义域的关于原点对称的公共区间内奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶.偶×偶=偶;奇×奇=偶;偶×奇=奇.(1)奇函数、偶函数的图象特点(3)奇偶性与单调性的关系(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=______,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中_____________的正数,那么这个最小正数就叫做f(x)的最小正周期.3.周期性存在一个最小f(x)例12判断下列函数的奇偶性11)1(xxxf23)2(xxfxxxf1)3(3,2,)4(2xxxf).(2)(,01);1()(,0.)(13xfxfxxxxfxxf)求(表达式;时)求(时且当是奇函数已知例1511011120,fxfafaa例已知是定义在区间,上的奇函数,在区间,上是减函数,且求实数的取值范围.题型三函数的奇偶性与周期性【例3】设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2011).函数的图象1、用学过的图像画图。2、用某种函数的图象变形而成。(1)关于x轴、y轴、原点对称关系。(2)平移关系。(3)绝对值关系。反比例函数kyx1、定义域.2、值域3、图象k0k0(,0)(0,+)(,0)(0,+)1.二次函数的定义与解析式①一般式:__________________.②顶点式:__________________,顶点为______.③零点式:____________________,其中_______是方程ax2+bx+c=0的两根.y=ax2+bx+c(a≠0)y=a(x-m)2+n(a≠0)y=a(x-x1)(x-x2)(a≠0)(m,n)(1)二次函数的定义形如:f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式x1,x2①对称轴:__

1 / 76
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功