高中物理必修二期中考试精华总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校曲线运动知识点总结(MYX)一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。二、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间mindtv船,合速度方向沿v合的方向。2、位移最小:①若vv船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cosvv水船,最小位移为minld。②若vv船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cosvv船水,过河最小位移为mincosvdldv水船。三、抛体运动1、平抛运动定义:将物体以一定的初速度沿水平方向抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做平抛运动。平抛运动的性质是匀变速曲线运动,加速度为g。类平抛:物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动(自由落体)。水平方向(x)竖直方向(y)yx0gttanθvvv龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校①速度0xvvyvgt合速度:22txyvvv②位移0xvt212ygt合位移:22xxy0tan2ygtxv※3、重要结论:①时间的三种求法:02yvhxtgvg,在空中飞行时间由高度决定。②202tvvgh,落地速度与0v和h有关。③tan2tan,末速度偏角为位移偏角正切值的2倍,tv的反向延长线平分水平位移。4、斜抛运动定义:将物体以一定的初速度沿与水平方向成一定角度抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做斜抛运动。它的受力情况与平抛完全相同,即在水平方向上不受力,加速度为0;在竖直方向上只受重力,加速度为g。速度:0cosxvv位移:0cosxvt0sinyvvgt201sin2yvtgt时间:0sin2cosxvtvg水平射程:2sin2vxy当45时,x最大。四、圆周运动1、基本物理量的描述①线速度大小:v=△L/△t单位m/s匀速圆周运动:2rvT②角速度大小:ω=△θ/△t单位rad/s匀速圆周运动:2T③周期T:物体运动一周需要的时间。单位:s。④频率f:物体1秒钟的时间内沿圆周绕圆心绕过的圈数。单位:Hz1fT⑤转速n:物体1分钟的时间内沿圆周绕圆心绕过的圈数。单位:r/s或r/min说明:弧度rad;角速度/rads;转速/rs,当转速为/rs时,fn2、两种传动方式的讨论传动类型图示说明结论共轴传动如图所示,A点和B点虽在同轴的一个“圆盘”上,但是两点到轴(圆心)的距离不同,当“圆盘”转动时,A点和B点沿着不同半径的圆周运动.它们的半径分别为r和R,且r<RABABTTABvrvR龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校皮带(链条)传动如图所示,A点和B点分别是两个轮子边缘上的点,两个轮子用皮带连接起来,并且皮带不打滑。ABvvABRrABTrTR3、向心加速度(1)定义:做匀速圆周运动的物体,加速度指向圆心。(2)物理意义:线速度方向改变的快慢。(3)方向:沿半径方向,指向圆心。(4)大小:22224varrrT(5)性质:匀速圆周运动是一个加速度大小不变、方向时刻变化的变加速曲线运动。4、向心力(1)定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。(2)大小:22224=mvFmrmrrT向(3)方向:指向圆心。特点:是效果力,不是性质力。向心力是做圆周运动的物体受到的沿着半径指向圆心的力,它可以由某一个力单独承担,也可以是几个力的合力,还可以是物体受到的合外力在沿半径指向圆心方向上的分量。作用效果只是改变物体速度的方向,而不改变速度的大小。性质力:重力、弹力、摩擦力(拉力,压力,支持力)、电场力、磁场力(安培力,洛伦兹力)效果力:动力、阻力、下滑力、向心力(4)性质:变加速运动。(5)匀速圆周运动:周期、频率、角速度大小不变;向心力,向心加速度、速度大小不变,方向时刻改变。五、生活中实际问题1、火车弯道转弯问题(1)受力分析:当外轨比内轨高时,铁轨对火车的支持力不再是竖直向上,和重力的合力可以提供向心力,可以减轻轨和轮缘的挤压。最佳情况是向心力恰好由支持力和重力的合力提供,铁轨的内、外轨均不受到侧向挤压的力。如图所示火车受到的支持力和重力的合力的水平指向圆心,成为使火车拐弯的向心力,(2)向心力为:=tanhFmgmgL向火车转弯时的规定速度为:0RghvL(3)讨论:当火车实际速度为v时,可有三种可能:0vv时,外轨向内挤压轮缘,提供侧压力。0vv时,内外轨均无侧压力,车轮挤压磨损最小。0vv,内轨向外挤压轮缘,提供侧压力。2、拱形桥(1)汽车过拱桥时,牛二定律:2vmgNmR结论:A.汽车对桥面的压力小于汽车的重力mg,属于失重状态。龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校B.汽车行驶的速度越大,汽车对桥面的压力越小。当速度不断增大的时候,压力会不断减小,当达到某一速度vgR时,汽车对桥面完全没有压力,汽车“飘离”桥面。汽车以大于或等于临界的速度驶过拱形桥的最高点时,汽车与桥面的相互作用力为零,汽车只受重力,又具有水平方向的速度的,因此过最高点后汽车将做平抛运动。(2)汽车过凹桥时,牛二定律:2vmgNmR结论:A.汽车对桥面的压力大于汽车的重力,属于超重状态。B.汽车行驶的速度越大,汽车对桥面的压力越大。当速度不断增大的时候,压力会不断增大。3、航天器中的失重现象航天器中的人和物随航天器一起做圆周运动,其向心力也是由重力提供的,此时重力完全用来提供向心力,不对其他物体产生压力,即里面的人和物出于完全失重状态。4、离心运动(1)定义:做匀速圆周运动的物体,在所受合力突然消失或者不足以提供圆周运动所需的向心力情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动。(2)本质:离心现象是物体惯性的表现。(3)应用:洗衣机甩干桶,火车脱轨,棉花糖制作。(4)FF提供需要离心;FF提供需要向心。5、临界问题1.如图所示细绳系着的小球或在圆轨道内侧运动的小球,当它们通过最高点时:(1)vgR时,物体没有达到轨道最高点便发生斜抛,离开了轨道。(2)vgR时,2vmgmR,物体恰好通过轨道最高点,绳或轨道与物体间无作用力。(3)vgR时,2vmgNmR,vN,绳或轨道对物体产生向下的作用力。2.在轻杆或管的约束下的圆周运动:杆和管对物体能产生拉力,也能产生支持力。当物体通过最高点时:(1)当0v时,Nmg,杆中表现为支持力。(物体到达最高点的速度为0。)(2)当0vgR时,2vmgNmR,vN,杆或轨道产生对物体向上的支持力。(3)当vgR时,2vmgmR,N=0,杆或轨道对物体无作用力。龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校(4)当vgR时,2vmgNmR,vN,杆或轨道对物体产生向下的作用力。天体运动归纳Ⅰ、重力类:(重力近似等于万有引力)1.主要解决天体表面重力加速度问题基本关系式:2RGMmmg例1、某星球质量是地球的1/5,半径为地球的1/4,则该星球的表面重力加速度与地球表面重力加速度的比值是多少?设天体表面重力加速度为g,天体半径为R,则:GRρπ342RGMg(334RM)由此推得两个不同天体表面重力加速度的关系为:2.行星表面重力加速度、轨道重力加速度问题:例2、设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,则g//g为A、1;B、1/9;C、1/4;D、1/16。表面重力加速度:22RGMgmgRMmG轨道重力加速度:ghRRhRMGg222)()(Ⅱ、天体运动类:行星(卫星)模型:F=GMmr2=mv2r=mrω2=m4π2T2r一、周期类:主要解决天体的质量(或密度)与同步卫星问题基本关系式:rTmrGMm222设恒星质量为M,行星质量为m(或行星质量为M,卫星质量为m),它们之间的间距为r,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v、ω、T.可以推得开普勒第三定律:KTr4πGM23(常量)1.天体质量(或密度)问题2324GTrM323GT3ρRrVM当r=R时,则天体密度简化为:2GT3ρR、T分别代表天体的半径和表面环绕周期,由上式可以看出,天体密度只与表面环绕周期有关.2.周期公式332rGMrT①对人造地球卫星而言,轨道半径越大,离地面越高,周期越大。21212221MMRRgg龙文教育——您值得信赖的专业化个性化辅导学校龙文教育——您值得信赖的专业化个性化辅导学校②近地卫星的轨道半径r可以近似地认为等于地球半径R,又因为地面2RGMg,所以有min5.84101.523sgRT。它是绕地球做匀速圆周运动的人造卫星的最小周期。二、同步卫星问题所谓地球同步卫星,是指卫星环绕地球运转与地球自转同步即“对地静止”(又叫静止轨道卫星)的一种特殊卫星。1.同步卫星的轨道与线速度.①同步卫星一定在赤道正上方论述要点:同步卫星要想“对地静止”其圆轨道必须与地轴垂直,又因每种卫星轨道必过地心。这就决定了同步卫星一定在赤道正上方②同步卫星离地高度证明要点:rTmrGMm2222RGMmmgsmRgTr/102.4473222h=r-R=3.56×107m(约为三万六千千米)③运行速率v=2πr/T=3.1km/s2.飞船(卫星)的发射与回收(此类型要涉及开普勒三定律)例3.飞船沿半径为r的圆周绕地球运动,其周期为T,如图所示如果飞船要返回地面,可在轨道上的某点A将速度降低到适当的数值,从而使飞船沿着地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,(地球半径为R)求1、飞船由A点到B点所需的时间。2、在椭圆轨道上经过A,B两点速度之比解析:此题考察了开普勒三定律内容,这个题目可以衍生出其它很多关于速度,加速度,能量的题目。三、线速度类:主要解决宇宙速度问题基本关系式:rmvrGMm22由此可得:r1rGMv1、第一宇宙速度(近地卫星运行速度)推导过程:令上式中r=R,得gRRGMv,将g=9.8m/s2、R=6.4×106m代入得:v1=7.9×103m/s=7.9km/s.这就是人造地

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功