第1页xx学院材料与文明学号:xxxxxxxxx专业:xxxxxxxxx学生姓名:xxxx任课教师:xxxx第2页纳米材料的综述摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。关键词:纳米材料性能应用领域制备工艺纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。人类对物质世界的研究,曾小到原子、分子,大到宇宙空间。从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。物质是由原子或分子构成的,原子、分子是保持物质化学、物理特性的最小微粒。这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值[1]。1.纳米与纳米材料的基本概念“纳米”是英文nanometer的译名。纳米是一个长度单位,是一个比微米小得多的计量单位。1纳米,即1nm=10-9m,也就是十亿分之一米,约相当45个原子串在一起的长度。第3页纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统[2]。2.纳米材料的性质2.1纳米材料的特性纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料与同组成的微米晶体材料相比,在力、磁、电、热、光等方面有许多奇异的性能[3],因而成为材料科学和凝聚态物理领域中的研究热点。2.11力学性质纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。2.12磁学性质当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料,在光磁系统、光磁材料中有着广泛的应用[4]。2.13电学性质由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库第4页仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2.14热学性质纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。2.15光学性质纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象[5],其光吸收率很大,所以可应用于红外线感测器材料。2.2纳米材料的特殊效应纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[6]等。2.21表面与界面效应纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。如下图所示:从图中可以看出,粒径在10nm以下,将迅速增加表面原子的比例。当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子第5页的表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性[7]。2.22小尺寸效应当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅[8]颗粒在20纳米时却开始导电。2.23量子尺寸效应当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明[9]。2.24纳米材料的体积效应由于纳米粒子体积极小,所包含的原子数很少,相应的质量极小。因此,许多现象就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象通常称之为体积效应。2.25宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。3.纳米材料的广泛应用与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。纳米材料的诸多优异性,可能在光电器件、第6页灵敏传感器、隐身技术、催化、信息储存等广泛的领域得到应用。包括在建筑、化工、纺织、汽车和环保[10]等行业中的应用奠定了基础。3.1纳米材料在陶瓷领域方面的应用陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,使陶瓷具有象金属一样的柔韧性和可加工性。所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布[11]、缺陷尺寸等都是在纳米量级的水平上。虽然纳米陶瓷还有许多关键技术需要解决,但其优良的室温和高温力学性能、抗弯强度、断裂韧性,使其在切削刀具、轴承、汽车发动机部件等诸多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,具有广阔的应用前景。3.2纳米材料在微电子学上的应用纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)[12]阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。目前,利用纳米电子学已经研制成功各种纳米器件。单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、巨磁阻效应制成的超微磁场探测器已经问世。并且,具有奇特性能的碳纳米管的研制成功,为纳米电子学的发展起到了关键的作用。碳纳米管是由石墨碳原子层卷曲而成,径向尺层控制在100nm以下。电子在碳纳米管的运动在径向上受到限制,表现出典型的量子限制效应,而在轴向上则不受任何限制。其独特的电学性能使碳纳米管可用于大规模集成电路,超导[13]线材等领域。3.3纳米材料在生物工程上的应用众所周知,分子是保持物质化学性质不变的最小单位。生物分子是很好的信息处理材料,每一个生物大分子本身就是一个微型处理器,分子在运动过程中以可预测方式进行状态变化,其原理类似于计算机的逻辑开关,利用该特性并结合第7页纳米技术,可以此来设计量子计算机。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用。科学家们认为[14]:要想提高集成度,制造微型计算机,关键在于寻找具有开关功能的微型器件。纳米计算机的问世,将会使当今的信息时代发生质的飞跃。它将突破传统极限,使单位体积物质的储存和信息处理的能力提高上百万倍,从而实现电子学上的又一次革命。3.4纳米技术在光电领域的应用纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高。将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察[15]。3.5纳米材料在化工领域的应用纳米粒子作为光催化剂,有着许多优点。首先是粒径小,比表面积大,光催化效率高。另外,纳米粒子生成的电子、空穴在到达表面之前,大部分不会重新结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。其次,纳米粒子分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移、质子转移、半导体能级结构与表面态密度的影响。目前,工业上利用纳米二氧化钛-三氧化二铁作光催化剂,用于废水处理(含SO32-或Cr2O72-体系),已经取得了很好的效果。纳米静电屏蔽材料,是纳米技术的另一重要应用。以往的静电屏蔽材料一般都是由树脂掺加碳黑喷涂而成,但性能并不是特别理想。为了改善静电屏蔽材料的性能,利用具有半导体特性的纳米氧化物粒子如Fe2O3、TiO2、ZnO等做成涂料,由于具有较高的导电特性,因而能起到静电屏蔽作用。另外,氧化物纳米微粒的颜色各种各样,因而可以通过复合控制静电屏蔽涂料的颜色,这种纳米静电屏蔽涂料不但有很好的静电屏蔽特性,而且也克服了碳黑静电屏蔽涂料只有单一颜色的单调性。纳米微粒还可用作导电涂料,用作印刷油墨,制作固体润滑剂等[16]。第8页3.6纳米材料在医学上的应用随着纳米技术的发展,在医学上该技术也开始崭露头脚。研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,