防雷器件陶瓷放电管GDT-TVS-半导体放电管TSS-MOV等大汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

讲解人:丁耀鸿指导老师:雷斌防雷器件的学习——硕凯电子2前言1.浪涌是如何产生的?雷电引起感应雷,雷电侵入波,静电放电,大功率设备的启停,工程设计不完善,如接地不合理,没有安装防浪涌装置等。2.浪涌的危害?1、系统瘫痪,设备停机,产品质量下降导致商业竞争力减弱。2、设备寿命降低,可靠性下降,造成成本上升。3、由于微电子技术的迅猛发展,超大集成电路的应用,这些元件的抗浪涌能力很低是造成设备损坏的主要原因。3.如何有效的防止浪涌?将浪涌电流引入地下将输出电压钳制在一个安全的水平上不能阻止雷电的发生,但能防止其造成破坏。各种防雷元器件主要内容1.GDT,TSS(电压开关型)2.TVS,MOV(电压钳位型)3.电感,电阻,导线4.正温度系数热敏电阻(PTC)5.网络变压器6.保险丝1.1GDT学习1.1.1陶瓷气体放电管(GDT)工作原理气体放电管是一种开关型保护器件,工作原理是气体放电。当两极间电压足够大时,极间间隙将放电击穿,由原来的绝缘状态转化为导电状态,类似短路。导电状态下两极间维持的电压很低,一般在20~50V,因此可以起到保护后级电路的效果。正常高阻态进入辉光状态进入弧光状态进入辉光状态电流增加恢复高阻状态外加过电压无持续电流V-t曲线图G辉光放电区(Glowmoderange)A/B弧光放电区(Arcmoderange)1.1.1陶瓷气体放电管(GDT)管子性能参数气体放电管的主要指标有:残压、响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容、续流遮断时间。气体放电管的响应时间可以达到数百ns以至数ms,在保护器件中是最慢的。绝缘电阻高≥109Ω,通流量较其他防雷器件大,极间电容的值非常小,一般在5pF以下,极间漏电流非常小,为nA级。因此气体放电管并接在线路上对线路基本不会构成什么影响。设置在普通交流线路上的放电管,要求它在线路正常运行电压及其允许的波动范围内不能动作,则它的直流放电电压应满足:min(ufdc)≥1.8UP。式中ufdc直流击穿电压,min(ufdc)表示直流击穿电压的最小值。UP为线路正常运行电压的峰值。GDT性能参数气体放电管的续流遮断是设计电路需要重点考虑的一个问题。如前所述,气体放电管在导电状态下续流维持电压一般在20~50V,在直流电源电路中应用时,如果两线间电压超过15V,不可以在两线间直接应用放电管。在50Hz交流电源电路中使用时,虽然交流电压有过零点,可以实现气体放电管的续流遮断,但气体放电管类的器件在经过多次导电击穿后,其续流遮断能力将大大降低,长期使用后在交流电路的过零点也不能实现续流的遮断;还存在一种情况就是如果电流和电压相位不一致,也可能导致续流不能遮断。因此在交流电源电路的相线对保护地线、相线对零线以及相线之间单独使用气体放电管都不合适,当用电设备采用单相供电且无法保证实际应用中相线和中线不存在接反的可能性时,中线对保护地线单独使用气体放电管也是不合适的,此时使用气体放电管需要和压敏电阻串联。在交流电源电路的相线对中线的保护中基本不使用气体放电管。(我司有断续流产品BH601,原理是什么?)1.1.1陶瓷气体放电管(GDT)应用领域气体放电管主要可应用在交流电源口相线、中线的对地保护;直流RTN和保护地之间的保护;信号口线对地的保护;天馈口馈线芯线对屏蔽层的保护。气体放电管的失效模式多数情况下为开路,因电路设计原因或其它因素导致放电管长期处于短路状态而烧坏时,也可引起短路的失效模式。气体放电管使用寿命相对较短,多次冲击后性能会下降,同时其他放电管在长时间使用会有漏气失效这种自然失效的情况,因此由气体放电管构成的防雷器长时间使用后存在维护及更换的问题。1.1.2GDT内部结构与生产流程(1)、陶瓷气体放电管分别由电极、瓷管、焊料、阴极发射材料(电子粉)、惰性气体(2)、相关材料成份如下:电极——铁镍合金(4J42)瓷管——95瓷(95%AL2O3)焊料——银铜合金(AgCu28)电子粉——金属氧化物混合体惰性气体——Ne、Ar及相应混合气电极×2焊料×2瓷管×1惰性气体电极碳线瓷管电子粉焊料1.1.2GDT内部结构与生产流程电极清洗电子粉涂敷瓷管划碳线瓷管吹尘装配组合封接/老练电镀加压检漏/测试检测外观点焊移印浸硅油编带包装出售1.2TSS学习1.2.1半导体放电管TSS工作原理电压开关型瞬态抑制二极管(TSS,ThyristorSurgeSuppressor)与TVS管相同,也是利用半导体工艺制成的限压保护器件,但其工作原理与气体放电管类似,而与压敏电阻和TVS管不同。当TSS管两端的过电压超过TSS管的击穿电压时,TSS管将把过电压钳位到比击穿电压更低的接近0V的水平上,之后TSS管持续这种短路状态,直到流过TSS管的过电流降到临界值以下后,TSS恢复开路状态。VDRM断态电压IDRM断态电流VS转折电压IS转折电流VT导通压降IT导通电流IH维持电流1.2.1半导体放电管TSS管子性能参数精确的导通电压,快速的响应速度(小于1ns)、浪涌吸收能力强、电容值低、双向对称、可靠性高。易于制成表贴器件,很适合在单板上使用,TSS管动作后,将过电压从击穿电压值附近下拉到接近0V的水平,这时二极管的结压降小,所以用于信号电平较高的线路(例如:模拟用户线、ADSL等)保护时通流量比TVS管大,保护效果也比TVS管好。TSS适合于信号电平较高的信号线路的保护。在使用TSS管时需要注意的一个问题是:TSS管在过电压作用下击穿后,当流过TSS管的电流值下降到临界值以下后,TSS管才恢复开路状态,因此TSS管在信号线路中使用时,信号线路的常态电流应小于TSS管的临界恢复电流。临界恢复电流值随TSS管的型号和设计应用场合的不同而不同,使用时应注意在器件手册中查明所用具体型号的确切值。TSS管的击穿电压(min(UBR))、通流容量是电路设计时应重点考虑的。在信号回路中时,应当有:min(UBR)≥(1.2~1.5)Umax,式中Umax为信号回路的峰值电压。1.2.1半导体放电管TSS应用领域TSS管较多应用于信号线路的防雷保护。TSS管的失效模式主要是短路。但当通过的过电流太大时,也可能造成TSS管被炸裂而开路。TSS管的使用寿命相对较长。1.2.2TSS内部结构与生产工艺1.2.2TSS内部结构与生产工艺我司封装工艺芯片订购芯片脱粒焊接组装成型熟化切弯脚包装入库T.M.T.P电镀关键工序出货2.MOV,TVS参数性能2.1MOV参数性能工作原理压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻有碳化硅压敏电阻和氧化锌压敏电阻。常用的是氧化锌(ZnO)压敏电阻,它主要是以氧化锌为原料,添加多种微量金属氧化物,它的外面包封环氧树脂(可添加颜料)。2.1MOV参数性能性能参数压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千pF的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。压敏电阻的压敏电压(min(U1mA))、通流容量是电路设计时应重点考虑的。在直流回路中,应当有:min(U1mA)≥(1.8~2)Udc,式中Udc为回路中的直流额定工作电压。在交流回路中,应当有:min(U1mA)≥(2.2~2.5)Uac,式中Uac为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。在信号回路中时,应当有:min(U1mA)≥(1.2~1.5)Umax,式中Umax为信号回路的峰值电压。压敏电阻的通流容量应根据防雷电路的设计指标来定。一般而言,压敏电阻的通流容量要大于等于防雷电路设计的通流容量。2.1MOV参数性能应用领域压敏电阻主要可用于直流电源、交流电源、低频信号线路、带馈电的天馈线路。压敏电阻的失效模式主要是短路,当通过的过电流太大时,也可能造成阀片被炸裂而开路。压敏电阻使用寿命较短,多次冲击后性能会下降。因此由压敏电阻构成的防雷器长时间使用后存在维护及更换的问题。2.MOV,TVS参数性能2.2TVS参数性能工作原理TVS(TransientVoltageSuppression)是一种限压保护器件,作用与压敏电阻很类似。也是利用器件的非线性特性将过电压钳位到一个较低的电压值实现对后级电路的保护。TVS管的非线性特性比压敏电阻好,当通过TVS管的过电流增大时,TVS管的钳位电压上升速度比压敏电阻慢,因此可以获得比压敏电阻更理想的残压输出。在很多需要精细保护的电子电路中,应用TVS管是比较好的选择。TVS管的通流容量在限压型浪涌保护器中是最小的,一般用于最末级的精细保护,因其通流量小,一般不用于交流电源线路的保护,直流电源的防雷电路使用TVS管时,一般还需要与压敏电阻等通流容量大的器件配合使用。TVS管便于集成,很适合在单板上使用。2.2TVS参数性能性能参数TVS管的主要参数有:反向击穿电压、最大钳位电压、瞬间功率、结电容、响应时间等。TVS的响应时间可以达到ps级,是限压型浪涌保护器件中最快的。用于电子电路的过电压保护时其响应速度都可满足要求。TVS管的结电容根据制造工艺的不同,大体可分为两种类型,高结电容型TVS一般在几百~几千pF的数量级,低结电容型TVS的结电容一般在几pF~几十pF的数量级。一般分立式TVS的结电容都较高,表贴式TVS管中两种类型都有。在高频信号线路的保护中,应主要选用低结电容的TVS管。TVS具有的另一个优点是可灵活选用单向或双向保护器件,在单极性的信号电路和直流电源电路中,选用单向TVS管,可以获得比较低的残压。TVS的反向击穿电压、通流容量是电路设计时应重点考虑的。在直流回路中,应当有:min(UBR)≥(1.3~1.6)Umax,式中UBR为直流TVS的反向击穿电压,Umax是直流回路中的电压峰值。2.2TVS参数性能应用领域TVS管主要可用于直流电源、信号线路、天馈线路的防雷保护。TVS管的失效模式主要是短路。但当通过的过电流太大时,也可能造成TVS管被炸裂而开路。TVS管的使用寿命相对较长。GDT,MOV,TVS比较总结气体放电管压敏电阻浪涌抑制二极管类型橇棒箝位箝位反应时间1μs50ns1ns典型电容量/pF1500~500050漏电流1pA5~10μA200μA最大放电电流/A(8×20μs波形)200006500503.电感,电阻,导线电感、电阻、导线本身并不是保护器件,但在多个不同保护器件组合构成的防护电路中,可以起到配合的作用。防护器件中,气体放电管的特点是通流量大、但响应时间慢、冲击击穿电压高;TVS管的通流量小,响应时间最快,电压钳位特性最好;压敏电阻的特性介于这两者之间,当一个防护电路要求整体通流量大,能够实现精细保护的时候,防护电路往往需要这几种防护器件配合起来实现比较理想的保护特性。但是这些防护器件不能简单的并联起来使用,例如:将通流量大的压敏电阻和通流量小的TVS管直接并联,在过电流的作用下,TVS管会先发生损坏,无法发挥压敏电阻通流量大的优势。因此在几种防护器件配合使用的场合,往往需要电感、电阻、导线等在不同的防护元件之间进行配合。3.电感,电阻,导线3.1电感在串联式直流电源防护电路中,馈电线上不能有较大的压降,因此极间电路的配合可以采用空心电感,如下图:电感应起到的作用:防护电路达到设计通流量时,TVS上的过电流不应达到TVS管的最大通流量,因此电感需要提供足够的对雷击过电流的

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功