数字信号处理实验报告二时域采样与频域采样

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

..实验二:时域采样与频域采样姓名:班级:学号:一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。二、实验原理与方法时域采样定理的要点:(1)对模拟信号)(txa以间隔T进行时域等间隔理想采样,形成的采样信号的频谱)(ˆjX是原模拟信号频谱()aXj以采样角频率s(Ts/2)为周期进行周期延拓。公式为:)](ˆ[)(ˆtxFTjXaa)(1nsajnjXT(2)采样频率s必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。理想采样信号)(ˆtxa和模拟信号)(txa之间的关系为:naanTttxtx)()()(ˆ对上式进行傅立叶变换,得到:dtenTttxjXtjnaa])()([)(ˆdtenTttxtjna)()(=在上式的积分号内只有当nTt时,才有非零值,因此:..nnTjaaenTxjX)()(ˆ上式中,在数值上)(nTxa=)(nx,再将T代入,得到:nnjaenxjX)()(ˆ上式的右边就是序列的傅立叶变换)(jeX,即TjaeXjX)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T代替即可。频域采样定理的要点:(1)对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到2()(),0,1,2,,1jNkNXkXekN则N点IDFT[()NXk]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()NNNNixnXkxniNRn(2)由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[()NXk]得到的序列()Nxn就是原序列x(n),即()Nxn=x(n)。如果NM,()Nxn比原序列尾部多N-M个零点;如果NM,z则()Nxn=IDFT[()NXk]发生了时域混叠失真,而且()Nxn的长度N也比x(n)的长度M短,因此。()Nxn与x(n)不相同。在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实..验。三、实验内容及步骤(1)时域采样理论的验证:给定模拟信号,)()sin()(0tutAetxta式中A=444.128,=502π,0=502πrad/s,它的幅频特性曲线如图2.1图2.1)(txa的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。安照)(txa的幅频特性曲线,选取三种采样频率,即sF=1kHz,300Hz,200Hz。观测时间选msTp50。为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1nx,)(2nx,)(3nx表示。)()sin()()(0nTunTAenTxnxnTa因为采样频率不同,得到的)(1nx,)(2nx,)(3nx的长度不同,长度(点数)用公式spFTN计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFT[x(n)],k=0,1,2,3,-----,M-1式中k代表的频率为kMk2。要求:编写实验程序,计算)(1nx、)(2nx和)(3nx的幅度特性,并绘图显示。观察分..析频谱混叠失真。(2)频域采样理论的验证:给定信号如下:其它02614271301)(nnnnnx编写程序分别对频谱函数()FT[()]jXexn在区间]2,0[上等间隔采样32和16点,得到)()(1632kXkX和:32232()(),0,1,2,31jkXkXek16216()(),0,1,2,15jkXkXek再分别对)()(1632kXkX和进行32点和16点IFFT,得到)()(1632nxnx和:323232()IFFT[()],0,1,2,,31xnXkn161616()IFFT[()],0,1,2,,15xnXkn分别画出()jXe、)()(1632kXkX和的幅度谱,并绘图显示x(n)、)()(1632nxnx和的波形,进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法容易变程序实现。(1)直接调用MATLAB函数fft计算3232()FFT[()]Xkxn就得到()jXe在]2,0[的32点频率域采样(2)抽取32()Xk的偶数点即可得到()jXe在]2,0[的16点频率域采样16()Xk,即1632()(2),0,1,2,,15XkXkk。(3)当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()jXe在]2,0[的16点频率域采样16()Xk。..四、实验结果(1)实验源程序%内容一:时域采样理论程序%采样频率Fs=1000Hz;Tp=64/1000;%观察时间Tp=64微秒%产生M长采样序列x(n)Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);%M点FFT[xnt)]subplot(3,2,1);n=0:length(xnt)-1;stem(n,xnt,'.');%调用绘图函数stem绘制序列图xlabel({'n';'(a)采样频率Fs=1kHz'});ylabel('y(n)');axis([0,n(end),min(xnt),1.2*max(xnt)]);k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));xlabel({'f(Hz)';'(a)T*FT[xa(nT)],Fs=1kHz'});ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%采样频率Fs=300Hz;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);%M点FFT[xnt)]subplot(3,2,3);n=0:length(xnt)-1;stem(n,xnt,'.');%调用绘图函数stem绘制序列图xlabel({'n';'(b)采样频率Fs=300Hz'});ylabel('y(n)');axis([0,n(end),min(xnt),1.2*max(xnt)]);k=0:M-1;fk=k/Tp;subplot(3,2,4);plot(fk,abs(Xk));xlabel({'f(Hz)';'(b)T*FT[xa(nT)],Fs=300Hz'});ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%采样频率Fs=200Hz;Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);%M点FFT[xnt)]subplot(3,2,5);n=0:length(xnt)-1;stem(n,xnt,'.');%调用绘图函数stem绘制序列图xlabel({'n';'(c)采样频率Fs=200Hz'});ylabel('y(n)');axis([0,n(end),min(xnt),1.2*max(xnt)]);k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));xlabel({'f(Hz)';'(f)T*FT[xa(nT)],Fs=200Hz'});ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])..%内容二:频域采样理论程序M=27;N=32;n=0:M;xa=0:floor(M/2);xb=ceil(M/2)-1:-1:0;xn=[xa,xb];Xk=fft(xn,1024);%1024点FFT[x(n)],用于近似序列x(n)的FTX32k=fft(xn,32);%32点FFT[x(n)]x32n=ifft(X32k);%32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N);%隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2);%16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');boxontitle('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');boxontitle('(c)16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');boxontitle('(d)16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');boxontitle('(e)32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');boxontitle('(f)32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])(2)实验运行结果1.实验内容一:时域采样理论的验证0204060050100150n(a)采样频率Fs=1kHzy(n)0500100000.51f(Hz)(a)T*FT[xa(nT)],Fs=1kHz幅度051015050100150n(b)采样频率Fs=300Hzy(n)010020030000.51f(Hz)(b)T*FT[xa(nT)],Fs=300Hz幅度0510050100150n(c)采样频率Fs=200Hzy(n)05010015020000.5f(Hz)(f)T*FT[xa(nT)],Fs=200Hz幅度..实验结论:时域采样理论的验证程序运行结果exp2a.m如图10.3.2所示。由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率15

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功