铜仁中考数学试题(解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

贵州省铜仁地区2013年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2013•铜仁地区)|﹣2013|等于()A.﹣2013B.2013C.1D.02.(4分)(2013•铜仁地区)下列运算正确的是()A.a2•a3=a6B.(a4)3=a12C.(﹣2a)3=﹣6a3D.a4+a5=a93.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()A.B.C.D.4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD5.(4分)(2013•铜仁地区)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定考点:直线与圆的位置关系.分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.6.(4分)(2013•铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为()A.2cmB.7cmC.5cmD.6cm考点:三角形中位线定理.分析:由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.解答:解:如图,D,E,F分别是△ABC的三边的中点,则DE=AC,DF=BC,EF=AB,∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm,故选D.点评:解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.点评:本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.8.(4分)(2013•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.解答:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.点评:本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为()A.B.C.D.考点:由实际问题抽象出分式方程分析:设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度﹣李老师行驶的路程3000÷他的速度=5分钟,根据等量关系列出方程即可.解答:解:设张老师骑自行车的速度是x米/分,由题意得:﹣=5,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.10.(4分)(2013•铜仁地区)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3B.﹣2<x<3C.x<﹣2D.x>﹣2考点:一次函数与一元一次不等式.分析:看在x轴上方的函数图象所对应的自变量的取值即可.解答:解:∵直线y=kx+b交x轴于A(﹣2,0),∴不等式kx+b>0的解集是x>﹣2,故选:D.点评:此题主要考查一次函数与一元一次不等式解集的关系;理解函数值大于0的解集是x轴上方的函数图象所对应的自变量的取值是解决本题的关键.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)(2013•铜仁地区)4的平方根是±2.考点:平方根分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(4分)(2013•铜仁地区)方程的解是y=﹣4.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.解答:解:去分母得:2y+1=﹣3+y,解得:y=﹣4,经检验y=﹣4是分式方程的解.故答案为:y=﹣4点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP)为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为1.19×105亿元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:119000=1.19×105,故答案为:1.19×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2013•铜仁地区)不等式2m﹣1≤6的正整数解是1,2,3.考点:一元一次不等式的整数解分析:首先解不等式,确定不等式解集中的正整数即可.解答:解:移项得:2m≤6+1,即2m≤7,则m≤.故正整数解是1,2,3.故答案是:1,2,3.点评:本题考查不等式的正整数解,正确解不等式是关键.15.(4分)(2013•铜仁地区)点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接得到答案.解答:解:点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1),故答案为:(2,1).点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.16.(4分)(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB的值等于.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义得出sinB=,代入求出即可.解答:解:∵∠C=90°,AC=12,AB=13,∴sinB==,故答案为:.点评:本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.,..17.(4分)(2013•铜仁地区)某公司80名职工的月工资如下:月工资(元)18000120008000600040002500200015001200人数1234102022126则该公司职工月工资数据中的众数是2000.考点:众数分析:直接根据众数的定义求解.解答:解:数据2000出现了22次,次数最多,所以该公司职工月工资数据中的众数是2000.故答案为2000.点评:本题考查了众数:一组数据中出现次数最多的数据叫做众数.18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A1、A2、A3、…在射线OA上,B1、B2、B3、…在射线OB上,且A1B1⊥OA,A2B2⊥OA,…AnBn⊥OA;A2B1⊥OB,…,An+1Bn⊥OB(n=1,2,3,4,5,6…).若OA1=1,则A6B6的长是32.考点:等腰直角三角形专题:规律型.分析:仔细观察图形,分析其中的规律,得到AnBn的规律性公式,然后求得n=6时的值.解答:解:由题意,可知图中的三角形均为等腰直角三角形,OA1=1,A1B1=A1A2=1,B1A2=B1B2=,A2B2=A2A3=2,B2A3=B2B3=,A3B3=A3A4=4,…,从中发现规律为AnBn=2An﹣1Bn﹣1,其中A1B1=1,∴AnBn=2n﹣1.当n=6时,A6B6=26﹣1=25=32.故答案为:32.点评:本题考查图形的规律性.本题的图形是由一系列有规律的等腰直角三角形所组成,仔细观察图形,发现其中的规律,是解决本题的关键.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.考点:分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值分析:(1)先分别根据有理数乘方的法则、0指数幂、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把a=3,b=1代入原式进行计算即可.解答:解:(1)原式=﹣1+2×+1+=2;(2)原式=×=a﹣2;把a=+2代入上式得,原式=+2﹣2=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2013•铜仁地区)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.考点:全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:求出AD=AE,AB=AC,∠DAB=∠EAC,根据SAS证出△ADB≌△AEC即可.解答:证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.点评:本题考查了等腰直角三角形性质,全等三角形的性质和判定的应用,关键是推出△ADB≌△AEC.21.(10分)(2013•铜仁地区)为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功