1九年级数学下--圆的复习基础练习题A组:一、选择题:1.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.如下图1在⊙O中,弦的条数是()A.2B.3C.4D.以上均不正确3.如上图2,在半径为2cm的⊙O内有长为23cm的弦AB,则∠AOB为()A.60°B.90°C.120°D.150°二、填空题:4.过圆内的一点(非圆心)有________条弦,有________条直径.5.如上图3,OE,OF分别为⊙O的弦AB,CD的弦心距,如果OE=OF,那么______(只需写一个正确的结论).三、解答题:6.如图,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于点D,OD=5cm,求BC的长.B组:一、选择题:1.如下图1,AB是⊙O的直径,BD=CD,∠BOD=60°,则∠AOC=()A.30°B.45°C.60°D.以上都不正确2.如下图2,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°二、填空题:3.如上图3,CD⊥AB于点E,若∠B=60°,则∠A=________.4.如上图4,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC与CB的弧长的大小关系是______________.三、解答题:5.如图,已知AB=AC,∠APC=60°.(1)求证:△ABC是等边三角形;(2)求∠APB的度数.2C组:一、选择题:1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能2.在△ABC中,∠C=90°,AC=BC=4cm,点D是AB边的中点,以点C为圆心,4cm长为半径作圆,则点A,B,C,D四点中在圆内的有()A.1个B.2个C.3个D.4个3.⊙O的半径r=5cm,圆心到直线l的距离OM=4cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内二、填空题4.锐角三角形的外心在________;直角三角形的外心在________;钝角三角形的外心在________.5.在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则Rt△ABC其外接圆半径为________cm.三、解答题:6.如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.D组:一、选择题1.如下图1,PA切⊙O于点A,PO交⊙O于点B,若PA=6,OP=8,则⊙O的半径是()A.4B.27C.5D.102.如下图2,PA,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB=()A.90°B.100°C.110°D.120°二、填空题3.已知⊙O的直径为10cm,圆心O到直线l的距离分别是:①3cm;②5cm;③7cm.那么直线l和⊙O的位置关系是:①________;②________;③________.4.如上图3,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=________.5.如上图4,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B=______,∠C=______.三、解答题36.如图所示,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,求∠A的度数.E组:一、选择题1.一正多边形外角为90°,则它的边心距与半径之比为()A.1∶2B.1∶2C.1∶3D.1∶32.如右图,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A.60°B.45°C.30°D.22.5°二、填空题:3.正12边形的每个中心角等于________.4.正六边形的边长为10cm,它的边心距等于________cm.5.从一个半径为10cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________cm.三、解答题:6.如图,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?F组:一、选择题:1.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.24πcmB.12πcmC.10πcmD.5πcm2.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角是为()A.200°B.160°C.120°D.80°3.已知扇形的圆心角为60°,半径为5,则扇形的周长为()A.53πB.53π+10C.56πD.56π+10二、填空题:4.如下图1,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为________cm.45.如下图2,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是_______.三、解答题:6.如图,在正方形ABCD中,CD边的长为1,点E为AD的中点,以E为圆心、1为半径作圆,分别交AB,CD于M,N两点,与BC切于点P,求图中阴影部分的面积.G组:一、选择题:1.已知一个扇形的半径为60cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5cmB.25cmC.50cmD.75cm2.如下图1,小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为()A.150°B.180°C.216°D.270°二、填空题:3.如上图2,小刚制作了一个高12cm,底面直径为10cm的圆锥,这个圆锥的侧面积是________cm2.4.如上图3,Rt△ABC分别绕直角边AB,BC旋转一周,旋转后得到的两个圆锥的母线长分别为______.5.圆锥母线为8cm,底面半径为5cm,则其侧面展开图的圆心角大小为______.三、解答题:6.一个圆锥的高为33cm,侧面展开图为半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.