常见整除数的特征

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

常见整除数的特征能被2整除的数:个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数:各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数:个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数:个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数:个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。能被8整除的数:百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数:各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数:如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数:奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数:若一个整数能被3和4整除,则这个数能被12整除能被13整除的数:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。能被17整除的数:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。另一种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除能被19整除的数:若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。另一种方法:若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除能被23整除的数:若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除能被25整除的数:十位和个位所组成的两位数能被25整除。能被125整除的数:百位、十位和个位所组成的三位数能被125整除。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功